Quasi-uniform grids using a spherical helix

*Takeshi Enomoto (Kyoto University)
*enomoto.takeshi.3n@kyoto-u.ac.jp

8 April 2014

Acknowledgments: Dr S. Iga provided NICAM's grids.

Quasi-uniform grids on the sphere

Saff and Kuijlaars 1997

- Chemistry: Stable molecular structure (buckminsterfullerene)
- Physics: Location of identical point charges (J. J. Thomson's problem)
- Computation: Quadrature on the sphere and computational complexity
- Botany: Distribution of pores on pollen (Tammes's problem)
- Viral morphology, crystallography etc.

Proposed approaches

- Geodesic grids (Williamson 1968; Sadourny et al. 1968) NB. Spring dynamics used in NICAM (Tomita et al. 2001; Tomita and Satoh 2004)
- Cubed sphere (Sadourny 1972; McGregor 1996)
- Reduced (Kurihara 1965; Hortal and Simmons 1991)
- Yin-Yang (Kageyama and Sato 2004; Purser 2004)
- Fibonacci (Swinbank and Purser 2006)
- Conformally mapped polyhedra (Purser and Rančić 2011)

Dissection of an icosahedron

- Division of each side of 20 equilateral triangles into n
- $N=10 n^{2}+2$ points in total
- With bisection of edges $n=2^{l}$, $N=10\left(2^{l}\right)^{2}+2=12,42,162$, $642,2562,10242, \ldots$

Spherical helix

- $\lambda=m \theta \bmod 2 \pi$, $m \equiv \mathrm{~d} \lambda / \mathrm{d} \theta$ (slope)
- The length of a segment kept equal to the spacing between adjacent turns
- No limitations on the number of grids

Spherical helix for spherical SOM (self-organizing maps)

Nishio, Altaf-Ul-Amin, Kurokawa and Kanaya (2006)

$$
\begin{equation*}
\lambda=2 \sqrt{N} \theta \quad \bmod 2 \pi \tag{1}
\end{equation*}
$$

Compute the spiral length L numerically and arrange neurons at equal intervals.

With $L \approx 2 m$ for large $m=2 \sqrt{N}$ the ratio between the adjacent turns and the segment length is

$$
\begin{equation*}
\frac{2 \pi}{m} \frac{N}{2 m}=\frac{N \pi}{m^{2}}=\frac{\pi}{4} \neq 1 \tag{2}
\end{equation*}
$$

Generalized spiral points

Rakhmanov, Saff and Zhou (1994)

$$
\begin{align*}
\theta_{k} & =\arccos \left(h_{k}\right), h_{k}=-1+\frac{2(k-1)}{N-1}, 1 \leq k \leq N \tag{3}\\
\lambda_{k} & =\left(\lambda_{k-1}+\frac{c}{\sqrt{N\left(1-h_{k}^{2}\right)}}\right) \bmod 2 \pi \tag{4}\\
c & =3.6<\left(\frac{8}{\sqrt{3}}\right)^{1 / 2}=3.809 \tag{5}
\end{align*}
$$

The best packing on the sphere

Saff and Kuijlaars (1997)

- Hexagons except for 12 pentagons in the optimal arrangement.
- The area of the hexagon with the unit distance is $\sqrt{3} / 2$.
- Ignoring the pentagonal cells, assume the sphere is covered by hexagonal Dirichlet cells

$$
\begin{equation*}
N \frac{\sqrt{3}}{2} \delta_{N}^{2}=4 \pi \tag{6}
\end{equation*}
$$

Thus the scaling factor is $\delta_{N}=(8 \pi / \sqrt{3})^{1 / 2} N^{-1 / 2}$

Rakhmanov et al. (1994)

$$
\begin{align*}
\delta & =\left(\lambda_{k}-\lambda_{k-1}\right) \sqrt{1-h_{k}} \tag{7}\\
& =\left(\lambda_{k}-\lambda_{k-1}\right) \sin \theta_{k}=\frac{c}{\sqrt{N}} \tag{8}\\
m & =\frac{2 \pi}{\delta}=\sqrt{\frac{3}{8 \pi}} \pi \sqrt{N}=\sqrt{\frac{3}{2}} \sqrt{\pi N} \tag{9}
\end{align*}
$$

The ratio between the interval of the adjacent turns and the segment length is

$$
\begin{equation*}
\frac{2 \pi}{m} \frac{N}{2 m}=\frac{N \pi}{m^{2}}=\frac{2}{3} \neq 1 \tag{10}
\end{equation*}
$$

Spherical spiral

Bauer (2000)

$$
\begin{align*}
\theta_{k} & =\arccos \left(h_{k}\right), h_{k}=1-\frac{2 k-1}{N}, 1 \leq k \leq N \tag{11}\\
\lambda & =\sqrt{N \pi} \theta \bmod 2 \pi \tag{12}
\end{align*}
$$

With $L \approx 2 m$ for large $m=\sqrt{N \pi}$ the ratio between the adjacent turns and the segment length is

$$
\begin{equation*}
\frac{2 \pi}{m} \frac{N}{2 m}=\frac{N \pi}{m^{2}}=1 \tag{13}
\end{equation*}
$$

Analytically exact spiral

Koay (2011)
A line element

$$
\begin{equation*}
\mathrm{d} s=\sqrt{1+m^{2} \sin ^{2} \theta} \mathrm{~d} \theta, m \equiv \frac{\mathrm{~d} \lambda}{\mathrm{~d} \theta} \tag{14}
\end{equation*}
$$

is integrated to yield

$$
\begin{equation*}
L(\pi)=2 E\left(-m^{2}\right), E(l) \equiv \int_{0}^{\pi / 2} \sqrt{1-l \sin ^{2} \theta} \mathrm{~d} \theta \tag{15}
\end{equation*}
$$

$E(l)$ is the complete elliptic integral of the second kind and $L(\pi) \approx 2 m$ for large m.

Energy minimization on a sphere

The generalized energy for N points $\omega_{N}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ on the sphere

$$
E\left(\alpha, \omega_{N}\right) \equiv\left\{\begin{array}{cl}
\sum_{1 \leq i<j \leq N} \log \frac{1}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|} & \text { if } \alpha=0 \tag{16}\\
\sum_{1 \leq i<j \leq N}\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|^{\alpha} & \text { if } \alpha \neq 0
\end{array}\right.
$$

Various measures

- $\alpha=1$: Maximization of distance $E\left(1, \omega_{N}\right)$
- $\alpha=0$: Minimization of the logarithmic energy $E\left(0, \omega_{N}\right)$ (maximization of the product of distances).
Logarithmic extreme points
- $\alpha=-1$: J. J. Thomson's problem. Minimization of energy $E\left(-1, \omega_{N}\right)$. Fekete points
- $\alpha \rightarrow \infty$: The best packing on the sphere (Tammes's problem, the hard sphere problem). Maximization of the smallest distance among N points.

Theoretical approximation

Rakhmanov, Saff and Zhou (1994)

$$
\begin{align*}
f(-1, N) & =\frac{N^{2}}{2}-0.55230 N^{3 / 2}+0.0689 N^{1 / 2} \\
f(0, N) & =-\frac{1}{4} \log \left(\frac{4}{e}\right) N^{2}-\frac{1}{4} N \log N-0.026422 N+0.13822 \tag{18}
\end{align*}
$$

$$
\begin{equation*}
f(1, N)=\frac{2}{3} N^{2}-0.40096 N^{1 / 2}-0.188 N^{-1 / 2} \tag{19}
\end{equation*}
$$

Comparison of homogeneity

Compare norms with $N=12,42,162,642,2562,10242$

- Sadourny et al. (1968)
- Tomita and Satoh (1994)
- Rachmanov et al. (1994)
- Bauer (2000)

Logarithmic energy

Energy

Distance

The number of points within a radius

The points within $r<\pi / 6$ with $N=400$

Variance $N=642$

Variance $N=2562$

Variance $N=10242$

"Untidiness"

Nishio et al. (2006)
untidiness

Design choices

- Voronoi tessellation
- Approximate ME: quadrature with spherical harmonics
- 1D structure: interpolation. Semi-Lagrangian advection
- Weaknesses: 2D decomposition, local subdivision, ...

Summary

- Quasi-uniform grids can be easily generated with a spherical helix.
- Spherical helix grids are more uniform than geodesic grids in various measures.
- The ratio between the adjacent turns and the segment length is unity in Bauer (2000) and Koay (2011) and not in Rakhmanov et al. (1994) and Nishio et al. (1997).
- The spiral length is approximated in Bauer (2000) and computed with an iterative scheme without approximation in Koay (2011).
- Design choices remain for the use in dynamical cores

