A Nonhydrostatic Spectral-Element Atmospheric Dynamical-Core in CAM-SE

 David M. Hall
 Henry M. Tufo¹
 Ram D. Nair²

 Mark Taylor³
 Robert Klöfkorn²
 Lei Bao²

¹Department of Computer Science, University of Colorado, Boulder, CO (david.hall@colorado.edu)

 2 National Center for Atmospheric Research, Boulder, CO

³Sandia National Laboratory, Albuquerque, NM

April 10, 2014

Outline

THE PLAN **Develop a Nonhydrostatic Atmospheric Dynamical Core** in HOMME/CAM-SE for very high resolution. climate simulations in CESM

Outline

THE PLA **Develop a Nonhydrostatic Atmospheric Dynamical Core** in HOMME/CAM-SE for very high resolution climate simulations in CESM

Motivation: Why do we need a nonhydrostatic model in CESM?

- Our two paths to nonhydrostatis:
 SE & DG nonhydrostatic models
- SE governing equations
- Tests and Results
- Next Steps

Why model the climate?

 To predict and quantify changes cause by anthropogenic influences

Why model the climate?

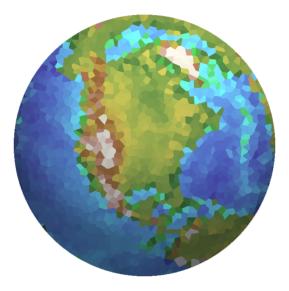
- To predict and quantify changes cause by anthropogenic influences
- To inform policy makers and the public, so they can make the best possible choices

Why model the climate?

- To predict and quantify changes cause by anthropogenic influences
- To inform policy makers and the public, so they can make the best possible choices
- To mitigate their impacts by enabling policy makers to allocate resources appropriately

What are the advantages of high resolution?

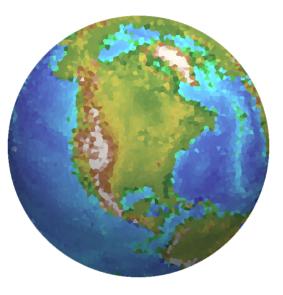
What are the advantages of high resolution?



Greater detail

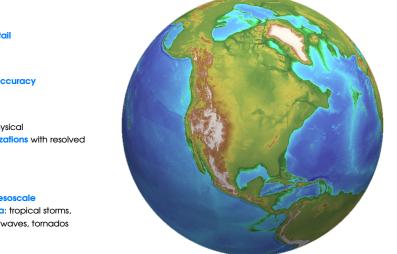
What are the advantages of high resolution?

Improved accuracy



What are the advantages of high resolution?

What are the advantages of high resolution?



Greater detail

Improved accuracy

Replace physical parameterizations with resolved dynamics

Capture mesoscale phenomena: tropical storms, orographic waves, tornados

What happens as we approach the hydrostatic limit? (10km per grid cell = $1/10^{\circ}$)

Photo Credit: Greg Thow

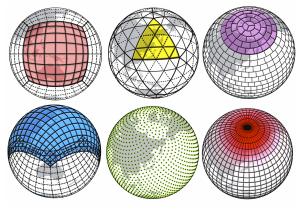
What happens as we approach the hydrostatic limit? (10km per grid cell = $1/10^{\circ}$)

Photo Credit: Greg Thow

- Hydrostatic balance approximation breaks down
- Vertical motion becomes commensurate with horizontal
- Pressure is no longer monotonic in the vertical
- Mesoscale phenomena become significant
- Nonhydrostatic equations of motion must be employed
- Simulation cost rises rapidly with resolution

Many paths toward a nonhydrostatic model

- Independent Variables
- Coordinate Systems
- Discretization: H & V
- Mesh: H & V
- Approximation of fast waves
- Regularization



choices for a global horizontal mesh

Our two paths: SE and DG

- ► As close as possible to PE model
- Spectral-Element discretization

Our two paths: SE and DG

- Conservative Path: SE
 - ► As close as possible to PE model
- Spectral-Element discretization

- Experimental Path: DG
 - Discontinuous-Galerkin discretization
 - ► Terrain-following Z coordinate

Our two paths: SE and DG

- Conservative Path: SE
- ► As close as possible to PE model
- Spectral-Element discretization

- Experimental Path: DG
 - Discontinuous-Galerkin discretization
 - ► Terrain-following Z coordinate

 Best features of both models will be merged

The Nonhydrostatic SE Model

 As similar as possible to the CAM-SE primitive-equation model

GLL spectral-elements

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates

cubed-sphere

GLL spectral-elements

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)

shallow-atmosphere

GLL spectral-elements

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)
 - Shallow-atmosphere approximation

hydrostatic-pressure terrain-following coordinates

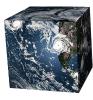
shallow-atmosphere

GLL spectral-elements

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)
 - Shallow-atmosphere approximation
- Spectral-Element discretization

hydrostatic-pressure terrain-following coordinates



cubed-sphere

shallow-atmosphere

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)
 - Shallow-atmosphere approximation
- Spectral-Element discretization
- Mimetic Operators for local conservation

cubed-sphere

shallow-atmosphere

GLL spectral-elements

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)
 - Shallow-atmosphere approximation
- Spectral-Element discretization
- Mimetic Operators for local conservation
- Laprise Compressible Euler equations instead of PE

The Nonhydrostatic SE Model

- As similar as possible to the CAM-SE primitive-equation model
- Hybrid terrain-following pressure coordinates
- Unstructured horizontal grid (cubed sphere by default)
 - Shallow-atmosphere approximation
- Spectral-Element discretization
- Mimetic Operators for local conservation
- Laprise Compressible Euler equations instead of PE
- Hydrostatic pressure vertical coordinate (instead of pressure)

cubed-sphere

shallow-atmosphere

GLL spectral-elements

prognostic equations only (excluding tracers) in hybrid pressure coordinates η

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{\pi} \nabla_{\eta} \pi - \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}\pi} \dot{\pi} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = 0 \end{array}$$

note: $p = \pi$ due to hydrostatic balance approximate	ion
--	-----

hybrid coordinate horizontal velocity temperature gas constant velocity source (force) hydrostatic pressure	$ \begin{aligned} & \eta \\ & \mathbf{u} = [u, v] \\ & T \\ & R \\ & \mathbf{F}_{u} \\ & \pi \end{aligned} $	2d gradient, constant η total pressure geopotential vertical unit vector heat source term pressure deviation	$\nabla \eta$ p Φ $\hat{\mathbf{k}}$ g p'	material derivative surface pressure Coriolis parameter heat capacity total velocity 3d gradient	$d/dt \\ \pi_{s} \\ f \\ \mathbf{v} = [u, v, w] \\ \nabla$
hydrostatic pressure pressure velocity	$\stackrel{\pi}{\omega} = \dot{\pi}$	pressure deviation	p'	3d gradient	∇

acceleration: coriolis force, pressure grad, grav grad, momentum sources

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -\int \hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{\pi} \nabla_{\eta} \pi - \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}\pi} \dot{\pi} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = 0 \end{array}$$

note: $p = \pi$	due to h	ydrostatic	balance	approximation

hybrid coordinate horizontal velocity temperature gas constant velocity source (farce) hydrostatic pressure	$ \begin{aligned} \eta \\ \mathbf{u} &= [u, v] \\ T \\ R \\ \mathbf{F}_{u} \\ \pi \end{aligned} $	2d gradient, constant η total pressure geopotential vertical unit vector heat source term pressure deviation	$ abla \eta \\ p \\ \Phi \\ \hat{\mathbf{k}} \\ g \\ p' \\ \end{pmatrix}$	material derivative surface pressure Coriolis parameter heat capacity total velocity 3d gradient	
hydrostatic pressure pressure velocity	$\stackrel{\pi}{\omega} = \dot{\pi}$	pressure deviation	p'	3d gradient	∇

temperature increases: compression, heat sources

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{\pi} \nabla_{\eta} \pi - \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}\pi} \dot{\pi} + \frac{\mathcal{Q}}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = 0 \end{array}$$

note: $p = \pi$ due to hydrostatic balance approximatic	note: $p = \pi$	hydrostatic balance appro	oximation
---	-----------------	---------------------------	-----------

hybrid coordinate horizontal velocity temperature gas constant velocity source (force)	$ \begin{aligned} & \eta \\ & \mathbf{u} = [u, v] \\ & T \\ & R \\ & \mathbf{F}_{u} \end{aligned} $	2d gradient, constant η total pressure geopotential vertical unit vector heat source term	$\nabla \eta$ p Φ $\hat{\mathbf{k}}$ Q	material derivative surface pressure Coriolis parameter heat capacity total velocity	
velocity source (force)	F _u	heat source term	9	total velocity	v = [u, v, w]
hydrostatic pressure	π	pressure deviation	p'	3d gradient	∇
pressure velocity	$\omega = \dot{\pi}$				

surface-pressure increases: flux of matter into the column

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{\pi} \nabla_{\eta} \pi - \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}\pi} \ \dot{\pi} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = 0 \end{array}$$

note: $p = \pi$ due to hydrostatic balance approximatic	note: $p = \pi$	hydrostatic balance appro	oximation
---	-----------------	---------------------------	-----------

hybrid coordinate horizontal velocity temperature gas constant velocity source (farce) hydrostatic pressure	$ \begin{aligned} \eta \\ \mathbf{u} &= [u, v] \\ T \\ R \\ \mathbf{F}_{u} \\ \pi \end{aligned} $	2d gradient, constant η total pressure geopotential vertical unit vector heat source term pressure deviation	$ abla \eta \\ p \\ \Phi \\ \hat{\mathbf{k}} \\ g \\ p' \\ \end{pmatrix}$	material derivative surface pressure Coriolis parameter heat capacity total velocity 3d gradient	
hydrostatic pressure pressure velocity	$\stackrel{\pi}{\omega} = \dot{\pi}$	pressure deviation	p'	3d gradient	∇

hydrostatic balance: vertical accelerations neglected

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{\pi} \nabla_{\eta} \pi - \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}\pi} \dot{\pi} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = 0 \end{array}$$

note: $p = \pi c$	due to hy	drostatic bo	alance appr	oximation
-------------------	-----------	--------------	-------------	-----------

hybrid coordinate horizontal velocity temperature gas constant velocity source (force)	$ \begin{aligned} & \eta \\ & \mathbf{u} = [u, v] \\ & T \\ & R \\ & \mathbf{F}_{u} \end{aligned} $	2d gradient, constant η total pressure geopotential vertical unit vector heat source term	$\nabla \eta$ p Φ $\hat{\mathbf{k}}$ Q	material derivative surface pressure Coriolis parameter heat capacity total velocity	
velocity source (force) hydrostatic pressure	F _μ π	heat source term pressure deviation	9 p'	total velocity 3d aradient	$\mathbf{v} = [u, v, w]$ ∇
pressure velocity	$\omega = \dot{\pi}$		1		

Nonhydrostatic Laprise Equations in p and π

pressure gains a nonhydrostatic component: $p = \pi + p'$

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{p} \nabla_{\eta} p - \left(\frac{\partial p}{\partial \pi}\right) \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{pp}} \dot{p} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u} \frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = -g\left(1 - \frac{\partial p}{\partial \pi}\right) \\ \text{total pressure} & \frac{1}{p} \frac{dp}{dt} = -\frac{c_{p}}{c_{v}} \left(\nabla \cdot \mathbf{v}\right) + \frac{Q}{c_{v}T} \end{array}$$

hybrid coordinate	η	2d gradient, constant η	$\nabla \eta$	material derivative	d/dt
horizontal velocity	u = [u, v]	total pressure	р	surface pressure	π_s
temperature	Т	geopotential	Φ	Coriolis parameter	f
gas constant	R	vertical unit vector	ĥ	heat capacity	cp
velocity source (force)	\mathbf{F}_{u}	heat source term	9	total velocity	$\mathbf{v} = [u, v, w]$
hydrostatic pressure	π	pressure deviation	p'	3d gradient	∇
pressure velocity	$\omega = \dot{\pi}$				

Nonhydrostatic Laprise Equations in p and π

a **new prognostic** is needed for total pressure.

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{p} \nabla_{\eta} p - \left(\frac{\partial p}{\partial \pi}\right) \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{pp}} \dot{p} + \frac{\mathcal{Q}}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u}\frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = -g\left(1 - \frac{\partial p}{\partial \pi}\right) \\ \text{total pressure} & \frac{1}{p}\frac{dp}{dt} = -\frac{c_{p}}{c_{v}} \left(\nabla \cdot \mathbf{v}\right) + \frac{\mathcal{Q}}{c_{vT}} \end{array}$$

hybrid coordinate	η	2d gradient, constant η	$\nabla \eta$	material derivative	d/dt
horizontal velocity	u = [u, v]	total pressure	p	surface pressure	π_s
temperature	Т	geopotential	Φ	Coriolis parameter	f
gas constant	R	vertical unit vector	ĥ	heat capacity	cp
velocity source (force)	\mathbf{F}_{u}	heat source term	9	total velocity	$\mathbf{v} = [u, v, w]$
hydrostatic pressure	π	pressure deviation	p'	3d gradient	∇
pressure velocity	$\omega = \dot{\pi}$				

Nonhydrostatic Laprise Equations in p and π

nonhydrostatic pressure gradient: vertical acceleration, gravitational gradient

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{p} \nabla_{\eta} p - \left(\frac{\partial p}{\partial \pi}\right) \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{pp}} \dot{p} + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{st}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u}\frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = -g\left(1 - \frac{\partial p}{\partial \pi}\right) \\ \text{total pressure} & \frac{1}{p}\frac{dp}{dt} = -\frac{c_{p}}{c_{v}} \left(\nabla \cdot \mathbf{v}\right) + \frac{Q}{c_{v}T} \end{array}$$

hybrid coordinate	η	2d gradient, constant η	$\nabla \eta$	material derivative	d/dt
horizontal velocity	u = [u, v]	total pressure	р	surface pressure	π_s
temperature	Т	geopotential	Φ	Coriolis parameter	f
gas constant	R	vertical unit vector	ĥ	heat capacity	cp
velocity source (force)	\mathbf{F}_{u}	heat source term	9	total velocity	$\mathbf{v} = [u, v, w]$
hydrostatic pressure	π	pressure deviation	p'	3d gradient	∇
pressure velocity	$\omega = \dot{\pi}$				

Nonhydrostatic Laprise Equations in $p \mbox{ and } p'$

track p' instead of p to reduce numerical approximation errors in $p-\pi$

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{p} \nabla_{\eta} p - \left(1 + \frac{\partial p'}{\partial \pi}\right) \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}p} \left(\dot{\pi} + \dot{p}'\right) + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u}\frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = g\left(\frac{\partial p'}{\partial \pi}\right) \\ \text{total pressure} & \frac{1}{p} \frac{dp}{dt} = -\frac{c_{p}}{c_{v}} \left(\nabla \cdot \mathbf{v}\right) + \frac{Q}{c_{v}T} \end{array}$$

hybrid coordinate	η	2d gradient, constant η	∇_{η}	material derivative	d/dt
horizontal velocity	u = [u, v]	total pressure	p	surface pressure	π_s
temperature	Т	geopotential	Φ	Coriolis parameter	f
gas constant	R	vertical unit vector	ĥ	heat capacity	c _p
velocity source (force)	$\mathbf{F}_{\mathcal{U}}$	heat source term	9	total velocity	$\mathbf{v} = [u, v, w]$
hydrostatic pressure	π	pressure deviation	p'	3d gradient	∇
pressure velocity	$\omega = \dot{\pi}$				

Nonhydrostatic Laprise Equations in $p \mbox{ and } p'$

replace pressure prognostic with pressure deviation prognostic

$$\begin{array}{ll} \text{horizontal velocity} & \frac{d\mathbf{u}}{dt} = -f\hat{\mathbf{k}} \times \mathbf{u} - \frac{RT}{p} \nabla_{\eta} p - \left(1 + \frac{\partial p'}{\partial \pi}\right) \nabla_{\eta} \Phi + \mathbf{F}_{u} \\ \text{temperature} & \frac{dT}{dt} = \frac{RT}{c_{p}p} \left(\dot{\pi} + \dot{p}'\right) + \frac{Q}{c_{p}} \\ \text{surface pressure} & \frac{\partial \pi_{s}}{\partial t} = \int_{1}^{\eta_{\text{top}}} \nabla_{\eta} \cdot \left(\mathbf{u}\frac{\partial \pi}{\partial \eta}\right) d\eta \\ \text{vertical velocity} & \frac{dw}{dt} = g\left(\frac{\partial p'}{\partial \pi}\right) \end{array}$$

pressure deviation
$$rac{dp'}{dt} = -\dot{\pi} - prac{c_p}{c_v}\left(
abla\cdot \mathbf{v}
ight) + prac{Q}{c_v T}$$

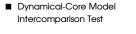
hybrid coordinate horizontal velocity temperature gas constant velocity source (force) hydrostatic pressure	$\eta = [u, v]$ T R F_{u} π	2d gradient, constant η total pressure geopotential vertical unit vector heat source term pressure deviation	$ abla \eta \\ p \\ \Phi \\ \hat{\mathbf{k}} \\ g \\ p' \\ bla \end{pmatrix}$	material derivative surface pressure Coriolis parameter heat capacity total velocity 3d gradient	$d/dt \\ \pi_{s} \\ f \\ c_{p} \\ \mathbf{v} = [u, v, w] \\ \nabla$
pressure velocity	$\omega = \dot{\pi}$	pleasure deviation	Р	od gradieni	v

Test DCMIP 3.1: Nonhydrostatic Gravity Waves

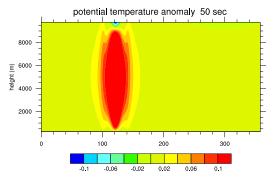
Dynamical-Core Model Intercomparison Test

- Dynamical-Core Model Intercomparison Test
- Gavity waves produced by a sudden thermal perturbation

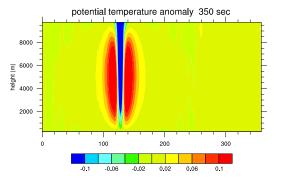
- Dynamical-Core Model Intercomparison Test
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



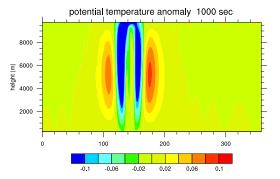
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



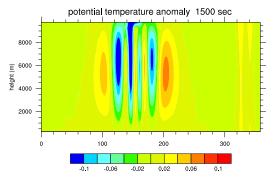
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



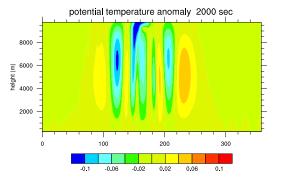
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



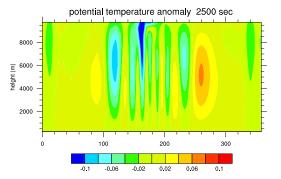
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



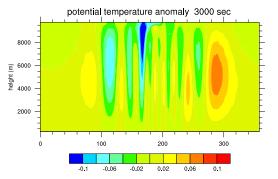
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125



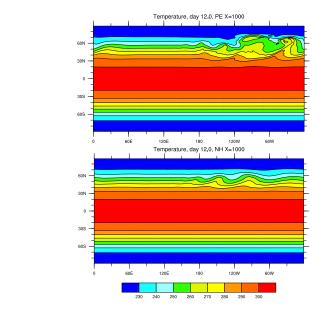
Test DCMIP 3.1: Nonhydrostatic Gravity Waves

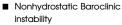
potential temperature anomaly 3000 sec 8000 6000 height (m) **Dynamical-Core Model** 4000 Intercomparison Test 2000 Gavity waves produced by a sudden thermal perturbation 100 200 300 potential temperature anomaly 3000 sec Reduced planet, scale factor X = 1258000 height (m) 6000 CAM-SE NH vs PE 4000 2000 100 200 300 -0.1 -0.06 -0.02 0.02 0.06 0.1

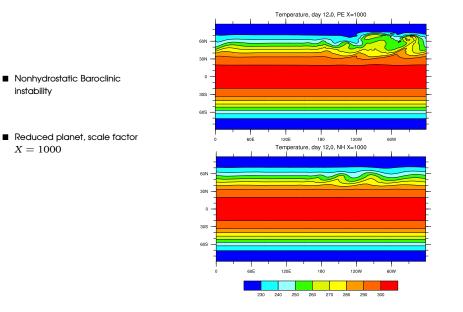
Test DCMIP 3.1: Nonhydrostatic Gravity Waves

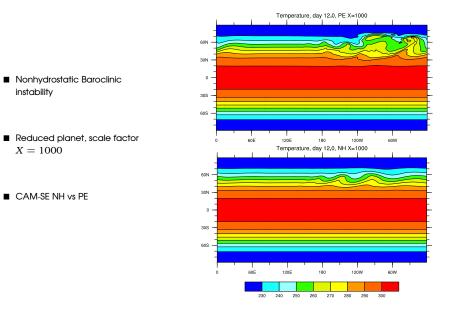
ICON-IAP c) 3000 s к 8000 6000 4000 2000 60E 120E 180 120W 60W potential temperature anomaly 3000 sec 8000 6000 height (m) 4000 2000 100 200 300 -0.1 -0.06 -0.02 0.02 0.06 0.1

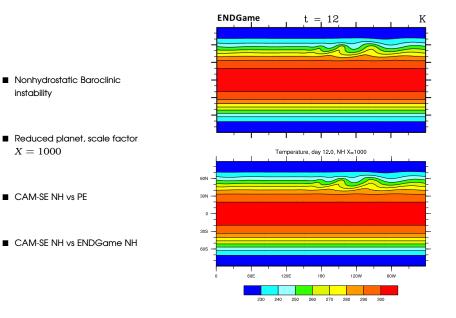
- Dynamical-Core Model Intercomparison Test
- Gavity waves produced by a sudden thermal perturbation
- Reduced planet, scale factor X = 125
- CAM-SE NH vs PE
- CAM-SE NH vs ICON-IAP



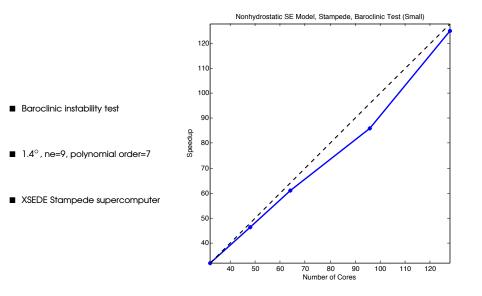








Strong Scaling



RESULTS

Dealing With Fast Acoustic Waves

- Explicit CFL Number limited by fast acoustic waves
- HE-VI Solution
- Implicit Solver in the column
- DIRK: diagonally-implicit runge kutta

SUMMARY

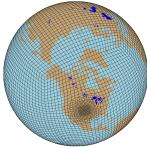
Next Steps

Implicit vertical solver

Coupled testing in CESM

 Integration with variable-resolution grids

Improved vertical coordinates



- CESM needs a nonhydrostatic model to achieve resolutions beyond 10km
- The CAM-SE / HOMME team is taking two approaches: SE and DG
- An explicit version of the nonhydrostatic SE model is in the testing stage
- An implicit solver in the vertical is the next step
- Much remains to be done