TOWARDS ULTRA-HIGH RESOLUTION CLIMATE SIMULATION USING A TWO-WAY NESTED MODEL: PRECIPITATION AND EXTREME EVENTS Lucas Harris

NOAA/Geophysical Fluid Dynamics Laboratory

2014 PDEs on the Sphere Workshop 10 April 2014, Boulder, CO

HIGH-RESOLUTION MODELING: LIMITED-AREA VS GLOBAL MODELS

- Boundary conditions of limited-area models become a problem for simulations longer than a few days
 - Require BCs supplied from a possibly-inconsistent global model, can cause boundary errors
 - No feedback onto large-scale
- Global models have no boundaries and provide a consistent
 solution everywhere, but global high resolution can be impractical
- Solution: grid refinement of a global model!

THE GFDL FV³ CORE

- Finite-volume D-grid model solving the vector-invariant (vorticity-KE form) hydrostatic primitive equations
 - Variables are cell- (or face-) averages, not point values
 - Flux-form scheme, so mass conserving
 - Vertically-Lagrangian hybrid-pressure coordinate
- Cubed-sphere grid in more recent versions
 - Non-hydrostatic version in late development

A message from our sponsor

- Nonhydrostatic core
- 2 km: c256 stretched by 20 (global model!!)

 Solo core with warm-rain microphysics

http://www.gfdl.noaa.gov/visualizations-mesoscale-dynamics

NESTING METHODOLOGY

- BCs: All variables linearly interpolated in space into nested grid halo
 - Concurrent nesting: extrapolation in time so nest and coarse grids can run simultaneously
- Two-way update:
 - Averaging-update for temperature
 - Vorticity-conserving for winds
 - No update for air and tracer mass: ensures mass conservation!!

WHY CLIMATE SIMULATION? (ONE POINT OF VIEW)

- Initial condition less important
- Running a climate simulation tests every resolved phenomenon repeatedly
- Errors have nowhere to hide!
 - But cause and effect of errors hard to diagnose—literally can be (thousands of) miles apart

Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean

Yen-Ting Hwang¹ and Dargan M. W. Frierson

Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640

Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved February 15, 2013 (received for review August 2, 2012)

WESTERN US DJF PRECIPITATION

mm/d

c192n2 (25 km) nest

HURRICANE INTENSITY

Nested-grid max intensity

JJA PRECIPITATION

mm/d

C384 SINGLE-GRID RESULTS

PRISM Observations

c360 (30 km) single-grid

c384 (25 km) single-grid

c384 Alternative configuration

mm/d

3

1

0

 $^{-1}$

-2

-3

-4

New nest: c384n3

- c384 global grid (25 km)
- Factor-of-three nest (8 km) over CONUS
- 8 mo/day with 4248 cores (c384 single-grid: 19 mo/day with 3456 cores)

C384 AND C384n3

PRISM Observations

c360 (30 km) single-grid

c384 Alternative configuration

c384 (25 km) single-grid

c384n3 (8 km) nested

mm/d

0

 $^{-1}$

-2

-3

-4

Parameterized Precipitation

Resolved Precipitation

CONCLUSIONS

- Enhanced resolution readily improves representation of orographic precipitation and hurricane intensity
- Great Plains precipitation only improves weakly with increasing resolution
- Nesting to 8 km gets the best results, especially in representing propagating features in the Northern Plains
- Want to avoid parameterization as much as possible to get the diurnal cycle right!!