Advances on an asymptotic parallel-in-time algorithm

Terry Haut and Beth Wingate and Gunnar Martinnson

Outline

Time-stepping method for PDEs that exhibit highly oscillatory time scales
a) Motivation and background
b) Brief recap of asymptotic parallel-in-time method

Key technical component: applying the exponential $e^{t L}\left(L^{*}=-L\right)$
a) Standard methods and their limitations
b) New parallel-in-time method
c) Examples on 2D shallow water equations with spectral element discretization

Motivation for time parallelism

- Future trend: more processors available than can be efficiently used by spatial parallelization alone
- Once gains from spatial refinement are saturated, higher processor counts will not increase speed
- For problems with fast temporal oscillations, standard methods generally require small time steps
- Time-stepping constraints (small time steps, lack of time parallelization) represent a fundamental bottleneck

Model equations

- Focus on PDEs of the form

$$
\frac{\partial \mathbf{u}}{\partial t}+\varepsilon^{-1} L \mathbf{u}=N(\mathbf{u})+D \mathbf{u}
$$

where $L^{*}=-L ; L$ has pure imaginary eigenvalues

- Includes the primitive equations, Boussinesq equations, etc.
- $\varepsilon^{-1} L$ results in rapid time oscillations (think of $e^{i \omega t / \varepsilon}$)
- Generally, even implicit and linearly exact methods require $\Delta t=\mathscr{O}(\varepsilon)$ (exception: $\|L \mathbf{u}\| \ll 1$)

Asymptotic parallel-in-time method

- Take many big time steps $n \Delta T, n=1,2, \ldots, N$ on an asymptotic approximation $(\Delta T \gg \varepsilon)$
- Refine the solution in parallel on $[n \Delta T,(n+1) \Delta T$] using small time steps Δt on the full equation

Figure 1: Schematic of parallel-in-time algorithm

Applying the operator exponential

- Asymptotic parallel-in-time method extends to general domains if $e^{t L} \mathbf{u}_{0}$ can be applied efficiently (here $L^{*}=-L$)
- Developed a method for applying $e^{t L} \mathbf{u}_{0}$ (with Gunnar Martinnson and Beth Wingate)

The exponential of a Skew-Hermitian matrix

- From eigenvalue decomposition $L=U(i \Omega) U^{*}$,

$$
e^{t L}=U\left(\begin{array}{cccc}
e^{i \omega_{1} t} & 0 & \cdots & 0 \\
0 & e^{i \omega_{1} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{i \omega_{N} t}
\end{array}\right) U^{*}
$$

- Approximation R_{M} (ix) of $e^{i x}$ yields approximation of $e^{t L}$,

$$
\left\|e^{t L}-R_{M}(t L)\right\|_{2}=\max _{1 \leq k \leq N}\left|e^{i \omega_{k} t}-R_{M}\left(i \omega_{k}\right)\right|
$$

Standard methods for operator exponential

- Standard methods build polyomial or rational approximations $R_{M}(t L)$ to $e^{t L}$ iteratively
- Forward Euler: $R_{M}(t L) \mathbf{u}_{0}=(\Delta t L+I)^{M} \mathbf{u}_{0}, t=M \Delta t$
- Backward Euler: $R_{M}(t L) \mathbf{u}_{0}=(-\Delta t L+I)^{-M} \mathbf{u}_{0}, t=M \Delta t$
- Other common approaches: Krylov methods, scaling and squaring, Chebyshev polynomials, etc.
- All of these methods rely on polynomial or rational approximations that are inherently serial

Optimal rational approximations for exponential

- Construct (near) optimal rational approximation, $R_{M}(i x)$, to $e^{i x}$ on the interval $-t\left|\omega_{N}\right| \leq x \leq t\left|\omega_{N}\right|$ with ε error
- Leads to approximation of $e^{t L}$,

$$
\left\|e^{t L} \mathbf{u}_{0}-\sum_{m=1}^{M} a_{m}\left(t L-\alpha_{m}\right)^{-1} \mathbf{u}_{0}\right\|_{2} \leq \varepsilon\left\|\mathbf{u}_{0}\right\|_{2}+2\left\|P_{\omega_{M+1} / t} \mathbf{u}_{0}-\mathbf{u}_{0}\right\|_{2}
$$

- The inverses $\left(t L-\alpha_{m}\right)^{-1} \mathbf{u}_{0}$ can be applied in parallel
- Near optimality even when $t\left|\omega_{N}\right| \gg 1$; can parallelize over many characteristic wavelengths

Rational approximations, continued

- Rational approximation $R_{M}(i x)$ has (near) optimally small error in the L^{∞} norm (with Beylkin et al, (2013))
- This results in high efficiency relative to standard methods
- The same poles (and inverses) for $e^{t L} \mathbf{u}_{0}$ can be used to apply $e^{s L} \mathbf{u}_{0}$ for all $0 \leq s \leq t$
- Can apply $e^{t L}$ with $M \ll\left|t \omega_{N}\right|$ terms if there is a priori knowledge of spectral gaps
- Also works for general functions $f(t L)$ (e.g. exponential integrators, filters, etc.)

Applying the inverse

- Need to apply $\left(t L-\alpha_{m}\right)^{-1} \mathbf{u}_{0}$; typically reduces to an elliptic solve in one variable
- For e.g. RSW equations (with constant Coriolis term f), can be reduced to applying $\left(\Delta-\left(\alpha_{m}^{2}+f^{2}\right) / c^{2}\right)^{-1}, c^{2}=g H$
- Since the shift α_{m} is complex-valued, multigrid should efficient
- Take another approach: precompute an efficient direct solver (Martinsson, 2012)

Direct solver

- Spatial discretization uses the spectral element method
- Direct solver related to Nested Dissection, i.e. "Gaussian elimination for sparse matrices"
- In 2D, can apply $\left(t L-\alpha_{m}\right)^{-1} \mathbf{u}_{0}$ in $\mathscr{O}(N \log (N))$ operations
- In 2D experiments, time for applying $\left(t L-\alpha_{m}\right)^{-1}$ is $4-5$ times more expensive than applying L
- In theory, can be accelerated to $\mathscr{O}(N)$ operations in 2D and 3D

Flow of direct solver

Figure 2: Interior variables are eliminated and boxes merged (top to bottom, left to right)

Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are pre-computed hierarchically

Eliminating variables hierarchically

(1) Eliminate internal variables (blue points) by using continuity of the normal derivative
(2) "Merge" DtN matrices of neighboring boxes Ω_{μ} and Ω_{λ} to get DtN matrix for parent box Ω_{λ}

Numerical expample for matrix exponential

- Apply to 2D shallow water equations on $[0,1] \times[0,1]$
- Test $e^{n t L} \mathbf{u}_{0}$ with $t=1.5, n=1, \ldots, 10$; compare against RK4 and the use of Chebyshev polynomials
- $6 \times 6=36$ elements, with 16×16 quadrature nodes per element (same for all three methods)
- Use 379 inverses $\left(t L-\alpha_{m}\right)^{-1}$ for $R_{M}(t L) \mathbf{u}_{0}$
- Similar relative speeds obtained with $12 \times 12=144$ elements, with 16×16 quadrature nodes per element

Applying functions of a skew-Hermitian operator

Numerical experiment, continued

Figure 3: (a) Errors, $\left\|\mathbf{u}(n t)-e^{n t L} \mathbf{u}_{0}\right\|_{\infty}, 1 \leq n \leq 10$ from three methods (a) Timings for three methods
(a)

(b)

Applying functions of a skew-Hermitian operator

Numerical experiment: long time integrator

Figure 4: Errors, $\left\|\mathbf{u}(n t)-e^{n t L} \mathbf{u}_{0}\right\|_{\infty}, t=1.5$ and $1 \leq n \leq 300$ using (near) optimal rational approximations

Summary

- New method for applying operator exponential $e^{t L}$
- Is close to optimal among all rational or polynomial approximations
- Can be parallelized over as many characteristic wavelengths as resources permit
- Can take advantage of known scale separation between fast and slow waves
- Generalizes to (near) optimal rational approximations of $f(t L)$

Optimal approximations of operator exponential

- For skew-Hermitian operator \mathscr{L},

$$
\left\|e^{\tau \mathscr{L}} \mathbf{u}_{0}-\sum_{m=-M}^{M} a_{m}\left(\tau \mathscr{L}-\alpha_{m}\right)^{-1} \mathbf{u}_{0}\right\|_{2} \leq \varepsilon\left\|\mathbf{u}_{0}\right\|_{2}+2\left\|P_{\wedge} \mathbf{u}_{0}-\mathbf{u}_{0}\right\|
$$

where P_{Λ} denotes projection associated with eigenvalues less than or equal to Λ.

- Spatial discretization L of \mathscr{L} may not be skew-Hermitian, but above bound leads to ε accuracy (up to spatial discretization)

Notation for parallel-in-time algorithm

- Write $\mathbf{U}_{n}=\mathbf{u}(n \Delta T)$
- Let $\varphi_{\Delta T}\left(\mathbf{u}_{0}\right)$ and $\bar{\varphi}_{\Delta T}\left(\mathbf{u}_{0}\right)$ denote results of evolving the full equation and the asymptotic equation by a time step ΔT
- So $\mathbf{U}_{n}=\varphi_{\Delta T}\left(\mathbf{U}_{n-1}\right)$ and

$$
\left\|\varphi_{\Delta T}\left(\mathbf{U}_{n}\right)-\bar{\varphi}_{\Delta T}\left(\mathbf{U}_{n}\right)\right\|=\mathscr{O}(\varepsilon) .
$$

Parallel in time algorithm

- Use a variation of the so-called parareal method
- Rewrite $\mathbf{U}_{n}=\varphi_{\Delta T}\left(\mathbf{U}_{n-1}\right)$ as

$$
\mathbf{U}_{n}=\bar{\varphi}_{\Delta T}\left(\mathbf{U}_{n-1}\right)+\left(\varphi_{\Delta T}\left(\mathbf{U}_{n}\right)-\bar{\varphi}_{\Delta T}\left(\mathbf{U}_{n}\right)\right)
$$

- Solve iteratively: if $\mathbf{U}_{n}^{k} \approx \varphi_{\Delta T}\left(\mathbf{U}_{n-1}\right)$ approximation at iteration k, then more accurate approx. \mathbf{U}_{n}^{k+1} given by

$$
\mathbf{U}_{n}^{k+1}=\bar{\varphi}_{\Delta T}\left(\mathbf{U}_{n-1}^{k+1}\right)+\left(\varphi_{\Delta T}\left(\mathbf{U}_{n}^{k}\right)-\bar{\varphi}_{\Delta T}\left(\mathbf{U}_{n}^{k}\right)\right), n=1, \ldots, N
$$

- At level $k+1$, expensive $\varphi_{\Delta T}\left(\mathbf{U}_{n}^{k}\right)$ can be computed in parallel using small time steps $\Delta t \ll \Delta T$ on time intervals $[n \Delta T,(n+1) \Delta T]$.

Shallow water equations

The 1D shallow water equations:

$$
\begin{aligned}
\frac{\partial v_{1}}{\partial t}+\frac{1}{\varepsilon}\left(-v_{2}+\frac{\partial \eta}{\partial x}\right)+v_{1} \frac{\partial v_{1}}{\partial x} & =\mu \frac{\partial^{4} v_{1}}{\partial x^{4}} \\
\frac{\partial v_{2}}{\partial t}+\frac{1}{\varepsilon} v_{1}+v_{1} \frac{\partial v_{2}}{\partial x} & =\mu \frac{\partial^{4} v_{2}}{\partial x^{4}} \\
\frac{\partial \eta}{\partial t}+\frac{1}{\varepsilon} \frac{\partial v_{1}}{\partial x}+\frac{\partial}{\partial x}\left(h v_{1}\right) & =\mu \frac{\partial^{4} \eta}{\partial x^{4}}
\end{aligned}
$$

Asymptotic solution

- The solution has a slowly varying asymptotic approximation (Majda et al., 1998):

$$
\mathbf{u}(t)=e^{-(t / \varepsilon) L} \overline{\mathbf{u}}(t)+\mathscr{O}(\varepsilon)
$$

where

$$
\frac{\partial \overline{\mathbf{u}}}{\partial t}=\bar{N}(\overline{\mathbf{u}})+\bar{D} \overline{\mathbf{u}}, \overline{\mathbf{u}}(0)=\mathbf{u}_{0} .
$$

Here e.g.

$$
\bar{N}(\overline{\mathbf{u}}(t))=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{s L} N\left(e^{-s L} \overline{\mathbf{u}}(t)\right) d s
$$

- Since $\partial_{t}^{p} \overline{\mathbf{u}}=\mathscr{O}(1)$ for all p, can take large time steps $\Delta T \gg \varepsilon$

Computing the asymptotic approximation numerically

- Use a variation of HMM (E and Engquist, 2003) to compute the asymptotic approximation on the fly:

$$
\begin{aligned}
\bar{N}(\overline{\mathbf{u}}(t)) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{s L} N\left(e^{-s L} \overline{\mathbf{u}}(t)\right) d s \\
& \approx \frac{1}{M} \sum_{m=1}^{M} \rho\left(\frac{s_{m}}{\varepsilon T_{0}}\right) e^{\left(s_{m} / \varepsilon\right) L} N\left(e^{-\left(s_{m} / \varepsilon\right) L} \overline{\mathbf{u}}(t)\right)
\end{aligned}
$$

- M is (essentially) independent of ε
- The time average can be computed in parallel
- Subtle point: local time average yields accuracy even when $\varepsilon=\mathscr{O}(1)$

Intuition behind HMM

- Expand $\mathbf{u}(x, t)$ in basis of eigenvectors $\mathbf{u}_{k}(x)$ of \mathscr{L} (corresponding to eigenvalues $i \omega_{k}$), so

$$
e^{-s \mathscr{L}} \mathbf{u}(x, t)=\sum_{k} e^{-i \omega_{k} s} c_{k}(t) \mathbf{u}_{k}(x)
$$

- Then can (in theory) expand nonlinear term

$$
e^{s \mathscr{L}} \mathscr{N}\left(e^{-s \mathscr{L}} \mathbf{u}(t)\right)=\sum_{\lambda_{n}} e^{i \lambda_{n} s} \mathscr{N}_{n}(\mathbf{u}(t))
$$

where $i \lambda_{n}$ is some linear combinations of the eigenvalues $i \omega_{k}$

- Therefore,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{s \mathscr{L}} \mathscr{N}\left(e^{-s \mathscr{L}} \mathbf{u}(t)\right) d s=\sum_{\lambda_{n}=0} \mathscr{N}_{n}(\mathbf{u}(t))
$$

Intuition behind HMM

- Want to choose T_{0} and $\rho(s)$ such that

$$
\begin{array}{r}
\frac{1}{T_{0}} \int_{0}^{T_{0}} \rho\left(\frac{s}{T_{0}}\right) e^{s \mathscr{L}} \mathscr{N}\left(e^{-s \mathscr{L}} \mathbf{u}(t)\right) d s= \\
\sum_{\lambda_{n}} \mathscr{N}_{n}(\mathbf{u}(t)) \int_{0}^{1} e^{i T_{0} \lambda_{n} s} \rho(s) d s \approx \\
\sum_{\lambda_{n}=0} \mathscr{N}_{n}(\mathbf{u}(t))= \\
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{s \mathscr{L}} \mathscr{N}\left(e^{-s \mathscr{L}} \mathbf{u}(t)\right) d s
\end{array}
$$

- Therefore, need

$$
\int_{0}^{1} e^{i T_{0} \lambda_{n} s} \rho(s) d s \approx 0, \text { if } \lambda_{n} \neq 0
$$

- Repeated integration by parts shows that above integral is smaller than T_{0}^{-m} for any m

Flow of direct solver

Figure 5: Interior variables are eliminated and boxes merged (top to bottom, left to right)

Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are pre-computed hierarchically

Eliminating variables hierarchically

(1) Eliminate internal variables (blue points) by using continuity of the normal derivative
(2) "Merge" DtN matrices of neighboring boxes Ω_{μ} and Ω_{λ} to get DtN matrix for parent box Ω_{λ}

2D shallow water equations

Solve 2D shallow water equations,

$$
\left(\begin{array}{c}
u_{t} \\
v_{t} \\
\eta_{t}
\end{array}\right)=\left(\begin{array}{ccc}
0 & f & \partial_{x} \\
-f & 0 & \partial_{y} \\
\partial_{x} & \partial_{y} & 0
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
\eta
\end{array}\right) .
$$

References

Terry Haut and Beth Wingate and Gunnar Martinnson

