

Adaptive Mesh Refinement for Tropical Cyclone Prediction

Eric A. Hendricks¹, Michal A. Kopera², Francis X. Giraldo², Sasa Gabersek¹, P. Alex Reinecke¹, Kevin Viner¹, Qingfang Jiang¹, James D. Doyle¹, Melinda S. Peng¹

¹Naval Research Laboratory, Monterey, CA, USA ²Naval Postgraduate School, Monterey, CA, USA

PDEs on the Sphere Workshop, 7-11 April 2014, Boulder, CO

Introduction

- Next generation atmospheric models require a unified approach
 - Spatial: microscale to global
 - Temporal: weather to climate
- Tropical cyclones (TCs) require:
 - Fine resolution in their core for resolving processes responsible for intensity
 - Coarser resolution generally ok for synoptic scale features responsible for track
- Typical current mesoscale models used multiple nested grid approach. Drawbacks:
 - Multiple lateral boundaries
 - Inefficiency doing same forecast multiple times
 - Nest feedback / lateral boundary blending
 - Scaling

Multiple Nests in COAMPS-TC

Simulated radar reflectivity from multiple nest forecast of Hurricane Sandy (2012) in a nested NWP mesoscale model (45-15-5 km, 15 and 5 km meshes move with TC)

Objective

- Examine capability of Adaptive Mesh Refinement (AMR) for tropical cyclone prediction in idealized framework
 - Compare AMR vs. Non-AMR (at highest AMR resolution) for accuracy of simulated phenomenon
 - Compare AMR vs. Non-AMR with regard to speed-up
- Test cases:
 - 1. Advecting tropical cyclone vortex
 - 2. Barotropic instability of an ITCZ-like shear zone, genesis of TC-like vortices
 - 3. Barotropic instability of the hurricane eyewall, eyeeyewall dynamics
- AMR Criterion
 - Refine and coarsen elements based on a potential vorticity (PV) threshold
 - PV chosen since inertia-gravity waves have zero PV (will not refine mesh for inertia-gravity wave)

Model: NUMA

- NUMA: <u>Non-hydrostatic</u> <u>Unified</u> <u>Model of the</u> <u>Atmosphere</u> (Giraldo and Restelli 2008)
- Shallow water model of NUMA (*f*-plane)
 - Continuous or Discontinuous Galerkin Methods
 - High order, accurate, highly scalable
 - Unstructured grids, AMR (Kopera and Giraldo 2014)

Initial Conditions:

No adaptive mesh refinement (**NO AMR HIGH**) vs. adaptive mesh refinement (**AMR**) Shallow Water NUMA, CG, *f*-plane, 2 mesh refinements max 5th order polynomials, RK4, initial dt=3 s, adapt mesh to PV, inviscid, nodal filter Highest horizontal resolution ~ 2km

NO AMR HIGH

AMR

CPU time: 2.2 h

CPU time: 0.43 h

AMR is over 5 times faster than NO AMR HIGH, and resolves the vortex core well

Initial Conditions

NO AMR COARSE

<u>AMR</u>

NO AMR COARSE 4 times faster than AMR, but significant errors in vortex core region

Quantifying Results

Number of Points

Normalized L2 Errors (vortex region r < 75 km)

Number of Elements

Final Integrated Kinetic Energy (IKE) (fraction of initial)

AMR Simulation L2 Errors are similar to NO AMR HIGH in vortex region

The Inter-Tropical Convergence Zone (ITCZ)

- AMR could be useful to resolve evolving localized small-scale deep convection and vorticity in ITCZ
- Coarser resolution is ok for resolving subtropical highs in descending branch of Hadley Circulation

The intertropical convergence zone can become barotropically unstable leading to a break down, and formation of multiple tropical cyclones

Ferreira and Schubert (1997) J. Atmos.Sci.

b) July 28

c) August 3

a) July 26

2. Barotropic Instability of the ITCZ

2. Barotropic Instability of the ITCZ

NO AMR HIGH

CPU time: 12.3 h

CPU time: 3.3 h

AMR

AMR useful for resolving ITCZ-like PV strip and its barotropic instability and break down Instability happens faster in AMR simulation, higher most unstable mode (WN 6) Factor of 4 speedup The hurricane eyewall often becomes barotropically unstable, and breaks down, leading to polygonal eyewalls and mesovortices.

Hendricks et at. (2012), Mon. Wea. Rev., for Hurricane Dolly (2008)

3. Barotropic Instability of the Eyewall

NO AMR HIGH

AMR

Thick PV ring, most unstable to azimuthal wavenumber m=3

3. Barotropic Instability of the Eyewall

NO AMR HIGH

<u>AMR</u>

- Can resolve eyewall and inner-core processes using AMR
- AMR simulations reproduces most unstable mode of WN 3
- Instability proceeds faster in AMR simulation

3. Barotropic Instability of the Eyewall AMR with 8th order polynomials

Hurricane eyewall can often take the form of a thin PV ring, which tends to break down rapidly to long lived eye mesovortices

3. Barotropic Instability of Eyewall (thin ring) AMR with 8th order polynomials

AMR can be useful for resolving hurricane inner-core dynamics (eyewall breakdown into multiple eye mesovortices), while saving on computational expense in rest of domain

Navy Next Generation Model

- Naval Research Laboratory currently investigating new generation dynamical cores under the Earth System Prediction Capability (ESPC)
- Using NUMA as the dynamical core, NRL is developing a new NWP system
 - 3D spectral element model
 - Highly accurate and scalable
 - <u>NEPTUNE</u>: <u>Navy Environmental Prediction sys</u>
 <u>U</u>tilizing the <u>N</u>UMA Cor<u>E</u>
 - A suite of physical parameterizations has been added
 - Real data initialization capability
 - Flexible grids (cube sphere, icosahedral, etc.)
 - Eventually, with have AMR included, and ocean component
 - Coordinating with both DCMIP and HIWPP

NEPTUNE Database Fields

Database Fields

- Monthly Climatological Fields:
 - ✓ Surface roughness
 - ✓ Albedo
 - ✓ SST
 - ✓ Ground Temperature
 - ✓ Ground Wetness
 - ✓ Ice Temperature
- Static Fields:
 - ✓ Terrain (40 km resolution)
 - ✓ Land-sea mask
 - ✓ Terrain Roughness
- Fields are read and transferred to the NEPTUNE grid using either bicubic interpolation or grid-box mean values, depending on the resolution of the input relative to the model grid (cubed-sphere grid shown)

NEPTUNE Initial Conditions

Initial and Boundary Conditions

- Read 0.5° isobaric fields:
 - ✓ Geopotential Height
 - ✓ Zonal Velocity
 - ✓ Meridional Velocity
 - ✓ Air Temperature
 - ✓ Vapor Pressure
- Interpolate to NEPTUNE grid

using tri-cubic interpolation

- Interpolate deviations from standard atmosphere
- Use hydrostatic extrapolation for areas above/below NAVGEM output

Convert to NEPTUNE prognostic variables:

- ✓ Density
- ✓ Zonal Velocity
- ✓ Meridional Velocity
- ✓ Vertical Velocity
- ✓ Potential Temperature
- ✓ Mixing Ratio

NAVGEM 500hPa Zonal Velocity/Geopotential Height

NEPTUNE 500hPa Zonal Velocity/Geopotential Height

NEPTUNE Real Data Simulation

∆x=~100 km, 0-24 h fcst from 00Z 25 June 2013 500-hPa Wind Speed (m s⁻¹)

24 hour

First 3D Spectral Element (SE in x, y, z) Real Data Meteorological Forecast in the World.

Summary

- Adaptive Mesh Refinement (AMR) examined for TC simulations in NUMA CG shallow water model
- AMR allows capability to resolve TC processes with significant speed-up over non-AMR simulations at highest resolution

The resolution is where you need it

- No loss in overall accuracy of phenomenon using AMR vs. non-AMR in region of interest
 - Barotropic instability proceeds quicker in AMR simulations (needs further investigation)
- AMR in next generation models replace the need for the complexity of multiple moving nests
- Navy next generation model based on NUMA core (NEPTUNE)
 - Will have AMR in the future