Development of smooth and homogeneity of icosahedral grid using spring dynamics method

(Iga and Tomita 2014, J. Compt. Phys.)

Introduction

 Icosahedral grid is based on icosahedron

- Used in many AGCMs
 - High performance with high resolution.

There are many way to generate Icosahedral grid

- Recursive type
 - baumgardnerfrederickson1985
 - Heikes and Randall1995a
 - Stune et al 1996
 - Xu et al 2006
- Non-recursive type
 - Williamson 1968
 - Sadourny et al. 1968
 - Steppeler et al. 2008

Pudikiewis 2011

Left: very discontinuous! Right: smoothed

Tomita et al

2001, 2002

Sadourny et al.1968

FIGURE 4.—Indexing of a rhombus cell, for n = 6

Spring dynamics method
– Tomita et al. 2001, 2002

We focus on this

Our purpose is to generate high performance icosahedral grid !

1. Large minimum-grid interval

Because of CFL condition

2. Small maximum-grid interval

To decrease error

3. Smooth (no-discontinuity)

- For stable calculation
- 4. Locally isotropic
 - Each triangles are nearly regular
- 5. Applicable to any resolution
 - Even for high resolution

Spring dynamics method (SPR) Tomita et al (2001,2002)

- Adjacent grid points are connected
- Initial location of grid points are arbitrarily given.

$$M\frac{d\mathbf{w}_0}{dt} = \sum_{i=1}^n k(d_i - \bar{d})\mathbf{e}_i - \alpha \mathbf{w}_0,$$
$$\frac{d\mathbf{r}_0}{dt} = \mathbf{w}_0,$$

Tomita et al. 2001,2002

Natural spring length: we can freely determine

Following Tomita et al 2002, we introduce β β : natural spring length normalized by averaged grid interval Repulsive when $\beta > 1$, attractive when $\beta < 1$, zero natural spring length when $\beta = 0$

Location of grid-points largely depend on natural spring length β

concentrates around pentagon

B=0

Angular mean resolution distribution

 β = 1.2 is better for simulation

Figure 6: Collapse of the grid around GP5 for the case $\beta = 1.2$ and GLEVEL = 9.

To avoid collapse, β should be decreased when resolution is high

- Tomita et al 2002 used β = 1.2 but it works only when dx \geq 28km.
- NICAM uses β = 1.15 but it works only when dx \geq 3.5km.
- When dx ≤ 1.7 km, β should be less than 1.15

However, homogeneity (d_{MIN} / d_{MAX}) is worse when β is small.

 γ_1

GLEVEL	β=0				β=1.05	β=1.1	β=1.15	β=1.2		
5	0.533	0.611	0.722	0.784	0.800	0.816	0.829	0.840	0.825	0.837
6	0.464	0.560	0.694	0.768	0.787	0.806	0.820	0.835	0.824	0.837
7	0.404	0.516	0.669	0.755	0.776	0.796	0.814	0.833	0.824	0.837
8	0.343	0.478	0.650	0.744	0.767	0.788	0.809	0.830	0.824	0.837
9	0.298	0.446	0.633	0.735	0.758	0.783	0.806	х	0.824	0.837
10	0.260	0.419	0.620	0.726	0.752	0.778	0.804	x	0.824	0.837
11	0.226	0.395	0.609	0.720	0.748	0.775	0.801	x	0.824	0.837
12	0.197	0.376	0.600	0.715	0.744	0.773	х	x	0.824	0.837
13	0.171	0.359	0.593	0.712	0.742	0.769	x	х	0.824	0.837
14	0.149	0.345	0.586	0.709	0.739	x	x	x	0.825	0.837

To generate dx= 400m grid, β should be 1.05, and d_{MIN} / d_{MAX} = 0.739 \rightarrow less homogeneous Newly proposed method resolves the problem!

Generation Method

- 1. Generate Spring dynamic grid with $\beta = 0$
- 2. Applies transformation by smooth analytic function around pentagon

Spring dynamic grid with $\beta = 0$

Distribution of grid interval fits with map factor of Lambert Comformal Conic Projection (LCCP) with map angle of 300° Map factor

Reason is shown later

Transformation by analytic function

 Then proposed grid is generated!

Comparison

Homogeneity defined as d_{MIN} / d_{MAX}

Which is better ?

Weighted homogeneity (d_{MIN} / d_{MAX}^2)

- This indicates cost-efficiency of simulation because
 - Maximum error may be proportional to d_{MAX}
 - Therefore, required grid points for some limited error is proportional to ${\rm d_{MAX}}^2$
 - Time step needed by CFL constraint is proportional to $d_{\mbox{\scriptsize MIN}}$
 - In total, d_{MIN} / d_{MAX}^2 means cost-efficiency of calculation

Weighted homogeneity (cost-efficiency) d_{MIN} / d_{MAX}^2

15 days later Same viscosity is used Spring dynamics grid β=1.2 (Tomita et al2002)

Summary

Compared with proposed grid, the other grids are

	Regulari ty of triangles	smoothn ess	homogenei ty	Weighted homogeneity	stability	accuracy
Spring grid $(\beta = 1.2)$	worse	equal	better	worse	worse	worse
Recursive grid	worse	worse	better	worse	worse	worse
Non- recursive grid	Not examine d	worse	worse	worse	Not examine d	Not examined

Proposed grid is better than the other grid in many properties.

Distribution of grid interval fits with map factor of Lambert Comformal Conic Projection (LCCP) with map angle of 300°

reason

- In the case β=0, when all triangles are regular, potential energy is minimum. (proven)
- Since potential energy tend to be minimum, triangles might become regular. (speculation)
- Imagine Lambert map filled with regular triangle grids → Lambert grid
- It might be resemble to Lambert grid (speculation)
- So, resolution distribution of spring grid with β=0 is similar to map factor of Lambert map.

In the case $\beta=0$, when all triangles are regular, potential energy is minimum.

From Heron's fomula, total area of whole triangles is

$$S = \sum_{j=1}^{N_T} \sqrt{s_j (s_j - \tilde{d}_{1j}) (s_j - \tilde{d}_{2j}) (s_j - \tilde{d}_{3j})},$$
(3)

It is rewritten as $S = \sum_{h=1}^{N_S} \frac{\sqrt{3}}{6} \alpha'_h d_h^2$,

With
$$0 < \alpha_j \le 1$$

It is rewritten as

written as
$$S = \sum_{i=1}^{N_T} \frac{\sqrt{3}}{12} (\tilde{d}_{1j}^2 + \tilde{d}_{2j}^2 + \tilde{d}_{3j}^2) \alpha_j, \tag{4}$$
Where $\alpha'_h \equiv \alpha_i + \alpha_j, \qquad \mathbf{O} \leq \mathbf{\alpha'}_h \leq \mathbf{1}$

On the other hand, potential energy is

$$PE = \sum_{h=1}^{N_S} \frac{1}{2} k d_h^2.$$

If all triangle are regular, $\alpha'_{\rm h}$ is unity (maximum) because potential energy is minimum.

Therefore, if potential energy approaches to minimum, we speculate that each triangles of spring dynamics grid with $\beta=0$ approaches to regular.

In reality, it is true ! right figure is α'_{H} It approach to 1 when resolution increases

- Lambert conformal conic projection map is filled with regular triangular mesh.
- Since it is conformal, corresponding sphere is also filled with regular triangular mesh which has singular points at the north pole.
- It can be presumed to be resemble to spring dynamics grids with β=0 which is also composed of regular triangles.
- If the presumption is true, grid interval of spring dynamics grid with β=0 is proportional to the map factor.

Map factor $r_{\rm L} \equiv C_L (1 - \cos \phi)^f (\sin \phi)^{-f}$.

Stuhne et al. 1996

FIG. 2. The computational mesh structures for refinement levels l = 0 through l = 6 of the basic icoshedron.

Recursive grid

- Original recursive grid is very discontinuous.
- In Xu et al.2006, it is smoothed by Laplacian

Non-recursive method

FIGURE 4.—Indexing of a rhombus cell, for n=6.

- 正二十面体の大三角
 形(ひし形)を等間隔
 の三角形(ひし形)に
 分割し、球面に投影。
- 辺の個所に不連続は
 残る。
- 最大・最小格子間隔 比は大きい。

Sadourny et al.1968

- ・京コンピュータを使用した、
 計算科学研究機構のグラ
 ンドチャレンジプロジェクト
 (2013年)
 - 水平400m解像度での全
 地球球気象シミュレーショ
 ンデモラン。(格子点数54
 万点)

しかし、チームが用いている既存の格子作成方法 では不具合が生じるので、対処したい!