Updates on the Dynamical Core Model Intercomparison Project (DCMIP)

Christiane Jablonowski, James Kent, Paul Ullrich, Kevin Reed, Peter Lauritzen, Ram Nair, Mark Taylor

PDEs on the Sphere Workshop, Boulder, 4/11/2014

The Ideas behind DCMIP

- The 2-week summer school and model intercomparison project DCMIP-2012 highlighted the newest modeling techniques for global climate and weather models
- Took place at NCAR from July/30-August/10/2012
- Brought together over 26 modeling mentors and organizers,
 37 students, and 19 speakers
- DCMIP-2012 paid special attention to emerging nonhydrostatic dynamical cores
- Hosted 18 participating dynamical cores (3 remote groups)

The Ideas behind DCMIP

- DCMIP-2012
 - Taught students, postdocs and the GCM community, both via lectures and hands-on sessions, at NCAR and elsewhere in the world (via the webcast and recordings):

http://earthsystemcog.org/projects/dcmip-2012/lectures

- Conducted an international dynamical core model intercomparison
- Defined, tested and probably established new dynamical core tests
- Our vision: establish DCMIP as a long-term virtual community via the cyberinfrastructure-supported workspace
- Gateway to the virtual community, and open invitation to become a member and participate:

http://earthsystemcog.org/projects/dcmip-2012/

DCMIP Participants & Modeling Mentors

DCMIP: Some Outcomes & Thoughts

- DCMIP-2012 exposed very interesting agreements and spreads among the results, and exposed the characteristics of the numerical schemes
- Mentors have found bugs in the codes, DCMIP accelerated the modeling efforts of some groups
- We have found some issues in the DCMIP test cases: e.g. initialization of 3.1 (gravity wave) for models with pressure-based vertical coordinates had slight imbalance
- We might want/need to fine-tune the test cases, potentially replace some and/or add others to the list
- The responses we got from modeling mentors and student participants were very positive. Nevertheless, the DCMIP experience for all can be further optimized.

DCMIP Test Cases: Goals and Wish-List

Test cases should

- be designed for hydrostatic and non-hydrostatic dynamical cores on the sphere, ideally: for both shallow and deep atmosphere models
- be easy to apply: analytic initial data (if possible) suitable for all grids formulated for different vertical coordinates
- be as easy as possible, but as complex as necessary
- be cheap and easy to evaluate: **small Earth**, standard diagnostics
- be relevant to atmospheric phenomena
- reveal important characteristics of the numerical scheme
- have an analytic solution or converged reference solutions
- deal with moisture in a simple way
- find broad acceptance in the modeling community

DCMIP Test Cases: Hierarchy with increasing complexity

DCMIP

The Architecture of the DCMIP Test Suite

The tests are hierarchical and increase in complexity

http://earthsystemcog.org/projects/dcmip-2012/test_cases

• 3D Advection

- Pure 3D advection without orography
- Pure 3D advection in the presence of orography
- Dry dynamical core without rotation
 - Stability of a steady-state at rest in presence of a mountain
 - Mountain-induced gravity waves on small planets
 - Thermally induced gravity waves on small planets
- Dry dynamical core with the Earth's rotation
 - From large (hydrostatic) to small (nonhydrostatic) scales, nonlinear baroclinic waves on a shrinking planet with dynamic tracers PV and θ

• Simple moisture feedbacks

- Moist baroclinic waves with large-scale condensation
- Moist baroclinic waves with simplified physics (simple-physics)
- Idealized tropical cyclones

The DCMIP Test Case Hierarchy

Table 1: Overview of all DCMIP test cases

- 11 3D deformational flow
 - 12 3D Hadley-like meridional circulation
- 13 2D transport of thin cloud-like tracers in the presence of orography
- 200 optional: Steady-state at rest in the presence of moderatley-steep orography
- 201 optional: Steady-state at rest in the presence of steep orography on a small planet (X=500)
- 21 Mountain waves over a Schaer-type mountain on a small planet without shear (X=500)
 - 22 Mountain waves over a Schaer-type mountain on a small planet with shear (X=500)
- 31 Gravity wave on a small planet, along the equator (X=125)
- 410 Dry baroclinic instability with dynamic tracers EPV and Θ and X=1
- 411 Dry baroclinic instability with dynamic tracers EPV and Θ and X=10 (scaled small planet)
- 412 Dry baroclinic instability with dynamic tracers EPV and Θ and X=100 (scaled small planet)
- 413 Dry baroclinic instability with dynamic tracers EPV and Θ and X=1000 (scaled small planet)
- 42 Moist baroclinic instability (with large-scale condensation)
- 43 optional: Moist baroclinic instability (with simplified physics forcing)
- 51 Idealized tropical cyclone (with simplified physics forcing)
 - 52 optional: Idealized tropical cyclone (with full physics forcing)

<u>Check the</u> <u>DCMIP-2012</u> <u>web page</u>

DCMIP-2012 Results

DCMIP-2012	Results by Mo	odel &	Inte	rcom	paris	on								
Announcements Organizers Sponsors & Host How to Use CoG	The following table conta access to model data for	ains links f	to the mo son, plea	odel resu ise use t	ult visualiz he advan	ced data	hich ca search	n be fou	nd under ea	ich model p	bage. Fo	r more i	nteractiv	ve
Reimbursements Photo Gallery	Model	Pure Advection			Small Earth				Baroclinic Wave			Tropical		
Modeling Groups				Mountain G Wa				G Wave				Cyclone		
DCMIP-2	2012 not co	mpl	ete	(vet	t)I	2-0-1	2-1	2-2	3-1	4-1-x	4-2	4-3	5-1	5-2
CAMELY		in pr	010		- / -	2-0-1	2-1	2-2	3-1	4-1-x	4-2	4-3	5-1	5-2
CAM-SE	DYNAMICO	1-1	1-2	1-3	2-0-0	2-0-1	2-1	2-2	3-1	4-1-x	4-2	4-3	5-1	5-2
ENDGame	ENDGame	1-1	1-2	1-3	2-0-0	2-0-1	2-1	2-2	3-1	4-1-x	4-2	4-3	5-1	5-2
GEN Some da	ita sets nee	ed to	be	upc	late	d (ei	rro	rs ir	n the	initia	l co	ndi	tio	าร
FIM FV3 GEN Some da IFS ICO or proble MCORE MPAS NICAM NIM OLAM PUN	ita sets nee ems in runs ^{IFS} ICON-IAP ICON-MPI-DWD	ed to 5) an 1-1 1-1	be d fu 1-2 1-2 1-2	upc 1-3 1-3 1-3	late er qu 2-0-0 2-0-0 2-0-0	d (er ualit ²⁻⁰⁻¹ 2-0-1	rro Cy C 2-1 2-1 2-1	rs ir hec 2-2 2-2 2-2	a the ked. 3-1 3-1 3-1	4-1-x 4-1-x 4-1-x	4-2 4-2 4-2	4-3 4-3 4-3	5-1 5-1 5-1	5-2 5-2 5-2 5-2
GEN Some da GEN Some da IFS or proble MCCRE MPAS NICAM NIM OLAM PUN UZI ASA Some da	Ita sets nee ems in runs IFS ICON-IAP ICON-MPI-DWD	ed to s) an 1-1 1-1 still	be d fu 1-2 1-2 1-2	upc 1-3 1-3 1-3	late er qu 2-0-0 2-0-0 2-0-0 ine	d (ei ualit 2-0-1 2-0-1 2-0-1 due	rro :y c 2-1 2-1 2-1 to	rs ir hec 2-2 2-2 2-2 fori	a the ked. ³⁻¹ 3-1 3-1 matti	4-1-x 4-1-x 4-1-x ng iss	4-2 4-2 4-2 sues	4-3 4-3 4-3 5 (n	5-1 5-1 5-1 0N-	5-2 5-2 5-2 5-2
GEN Some da GEN Some da IFS or proble MCCAL MPAS NICAM NIM OLAM PUN UZI ASA Some da Spe CF- and	ata sets nee ems in runs IFS ICON-IAP ICON-MPI-DWD ata sets are DCMIP-com	ed to s) an ¹⁻¹ still 1plia	be d fu 1-2 1-2 not nt N	upc Irth 1-3 1-3 1-3	late er qu 2-0-0 2-0-0 2-0-0 ine	d (er ualit 2-0-1 2-0-1 2-0-1 due forn	rro cy c 2-1 2-1 2-1 to nat	rs ir hec 2-2 2-2 2-2 fori , mi	n the ked. ³⁻¹ 3-1 matti issing	4-1-x 4-1-x 4-1-x ng iss	4-2 4-2 4-2 sues ada	4-3 4-3 4-3 s (n ta).	5-1 5-1 5-1 0N-	5-2 5-2 5-2
FIM FV3 GEN Some da IFS ICO Or proble MCCRL MPAS NICAM NIM OLAM PUN UZI ASA Some da Spe Pres CF- and Lect Reading List Test Cases	Ita sets nee ems in runs IFS ICON-IAP ICON-MPI-DWD Ita sets are DCMIP-com	ed to s) an ¹⁻¹ ¹⁻¹ still nplia	be d fu 1-2 1-2 1-2 not nt N	upc 1-3 1-3 1-3 0nl Net(late er qu 2-0-0 2-0-0 2-0-0 ine CDF	d (ei ualit 2-0-1 2-0-1 due forn 2-0-1	rro 2-1 2-1 2-1 to nat	rs ir hec 2-2 2-2 fori , mi	a the ked. ³⁻¹ 3-1 3-1 matti issing ³⁻¹	4-1-x 4-1-x 4-1-x ng iss met 4-1-x	4-2 4-2 4-2 sues ada	4-3 4-3 4-3 5 (n ta). 4-3	5-1 5-1 5-1 0N-	TS 5-2 5-2 5-2
FIM FV3 GEN Some da IFS ICO ICO MCORE MPAS NICAM NIM OLAM PUN UZI ASA Some da Spe CF- and Lect Reading List Test Cases Overview of Test Cases Socker Baution	Ita sets nee ems in runs IFS ICON-IAP ICON-MPI-DWD Ita sets are DCMIP-com	ed to s) an 1-1 1-1 still 1plia 1-1	be d fu 1-2 1-2 1-2 not nt N 1-2 1-2	upc 1-3 1-3 1-3 0 onl Net(1-3 1-3	late er qu 2-0-0 2-0-0 2-0-0 ine CDF 2-0-0 2-0-0	d (er ualit 2-0-1 2-0-1 due forn 2-0-1 2-0-1	rro 2-1 2-1 2-1 to nat 2-1 2-1	rs ir hec 2-2 2-2 for , mi 2-2 2-2	a the ked. ³⁻¹ 3-1 matti issing ³⁻¹ 3-1	4-1-x 4-1-x 4-1-x ng iss met 4-1-x 4-1-x	4-2 4-2 4-2 sues ada 4-2 4-2	4-3 4-3 4-3 5 (n ta). 4-3 4-3	5-1 5-1 5-1 ON- 5-1 5-1	TS 5-2 5-2 5-2 5-2
FIM FV3 GEN Some da IFS ICO or proble MCGRL MPAS NICAM NIM OLAM PUN UZI ASA Some da Spe CF- and Lect Reading List Test Cases Overview of Test Cases Fortran Routines Plots of Initial Data	Ita sets nee ems in runs IFS ICON-IAP ICON-MPI-DWD Ita sets are DCMIP-com	ed to s) an 1-1 1-1 still 1plia 1-1 1-1	be d fu 1-2 1-2 1-2 not nt N 1-2 1-2 1-2	upc 1-3 1-3 1-3 1-3 Net(1-3 1-3 1-3	late er qu 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0	d (er ualit 2-0-1 2-0-1 2-0-1 due forn 2-0-1 2-0-1 2-0-1	rro 2-1 2-1 2-1 to nat 2-1 2-1 2-1 2-1	rs ir hec 2-2 2-2 2-2 fori , mi 2-2 2-2 2-2 2-2	a the ked. 3-1 3-1 3-1 matti issing 3-1 3-1 3-1 3-1	4-1-x 4-1-x 4-1-x ng iss met 4-1-x 4-1-x 4-1-x 4-1-x	4-2 4-2 4-2 sues ada 4-2 4-2 4-2 4-2	4-3 4-3 5 (n ta). 4-3 4-3 4-3	5-1 5-1 5-1 ON- 5-1 5-1 5-1	TS 5-2 5-2 5-2 5-2 5-2 5-2

DCMIP – Going Forward

- Should there be another DCMIP, e.g. in June 2016?
- If there is interest, what are the scientific frontiers that we want to explore?
- What are the adequate test cases to answer our open model design questions? We need to address all scales (micro, meso, synoptic, planetary)!
- Should we change the format of DCMIP (e.g. fewer test scenarios run during DCMIP and submission of additional results ahead of time)? Longer? Shorter?
- Do we need stricter rules to determine the 'readiness' of model? The readiness of the DCMIP-2012 models and their mentors varied widely.

New Frontiers: Nonhydrostatic models with variable-resolution static grids or Adaptive **Mesh Refinements**

(AMR)

Variable-Resolution: Grid Transition Tests

Are there effects/ reflections in the grid transition area? Translation of a dry vortex ° on a non-rotating Earth

Low to high transition

High to low transition Zarzycki et al. (MWR, 2014)

DCMIP-2016: New Equation Sets?

Q. J. R. Meteorol. Soc. (2005), 131, pp. 2081-2107

doi: 10.1256/qj.04.49

Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic

By A. A. WHITE^{1*}, B. J. HOSKINS², I. ROULSTONE^{1,3} and A. STANIFORTH¹

approximations (see text).

Deep-Atmosphere Test: Baroclinic Wave

Small planet with reduction factor X=20

Ullrich et al. (QJ, 2014)

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx, Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- (Simple) moist interactions
- Long-term "climate-like" evaluations

Transport with toy-chemistry: The Terminator Test

Assess non-linearity of shape-preserving limiter and (maybe) physics-dynamics coupling

Baroclinic Wave: Dynamic Tracer Consistency

DCMIP Test 410:

Consistency of the Ertel potential vorticity (EPV) in CAM-FV (at day 12 on the 315 K isentropic level)

Compare the evolution of the dynamic EPV and EPV transported as a passive tracer

See also Whitehead et al. (QJ, in review)

1°x1° L30 dx = 110 km

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
 - 3D Unsteady solid body rotation (Staniforth et al.)
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx, Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- (Simple) moist interactions
- Long-term "climate-like" evaluations

Warm Bubble Triggered Gravity Waves

Test 31 on reduced-size Earth with circumference ≈ 320 km:

with translating west wind: Example of nonhydrostatic response in the potential temperature perturbation θ' (MCORE, animation)

Warm Bubble Triggered Gravity Waves

Test 31 on reduced-size Earth with circumference ≈ 320 km: Potential temperature perturbation θ' (K) along the equator after 3600 s in MCORE

dx = 1 km, dz = 1 km

DCMIP Test 3.1: Gravity Waves

Non-hydrostatic

Hydrostatic

-0.1 -0.06 -0.02 0.02 0.06 0.1Potential temperature perturbation θ' (K) at the equator after 3600 s

Compare: phase velocity, amplitude, symmetry properties, differences to hydrostatic solution

Test 31, dx= 1 km, dz = 1 km

Test Cases with Analytic Solutions: Gravity Wave

Or can we find an analytic solution to the existing test?

Baldauf et al. (QJ, 2014)

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx, Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- (Simple) moist interactions
- Long-term "climate-like" evaluations

DCMIP Test 21: Flow over a circular mountain

Small-Earth test with a circumference at the equator of 80 km (X=500): Distinguishes between hydrostatic and nonhydrostatic gravity wave responses

T' t = 3600

Should the test be improved?

dx=334 m, dz = 500 m

Mountain-Generated Gravity Waves

Mountain-Generated Gravity Waves

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx, Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- (Simple) moist interactions
- Long-term "climate-like" evaluations

Accuracy of the PGF

Steady-state with stratified thermal structure (constant lapse rate):

Spurious vertical pressure velocity in the presence of topography

Floating Lagrangian with 30 levels

-0.032

-0.024

Floating Lagrangian with 30 levels

Floating Lagrangian with 60 levels Lagrangian L60, h = 4 km

Big errors

-0.016

Δ

Higher and steeper mountain: Error almost insensitive to increased vertical resolution

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx, Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- (Simple) moist interactions
- Long-term "climate-like" evaluations

High Model Tops: Stratospheric Circulations

Dry Held-Suarez test with four dynamical cores, model top at 0.1 hPa (65 km)

Monthly-mean zonal-mean u at the equator

Exposes different Quasi-Biennial Oscillation (QBO)-like circulation and wave generation & propagation properties of the 4 CAM dycores

Yao and Jablonowski (GRL, 2013) Yao and Jablonowski, in prep.

Vertical velocity and Topographic Precipitation: Impact of Vertical Resolution

Vertical velocity and Topographic Precipitation: Impact of the Dycore

DCMIP-2016: Frontiers

- Consistent tracer transport
- (Linear) analytic solutions:
 - Gravity waves
 - Mountain-triggered gravity waves
- Vertical direction:
 - High model tops
 - Impact of vertical resolution
 - Consistency between horizontal and vertical resolutions, especially for small Δx , Δy grid spacings
- Pressure-gradient force (PGF) errors
- Extreme (steep) topography
- Physics-Dynamics coupling: (Simple) moist interactions
- Long-term "climate-like" evaluations: Held-Suarez

Baroclinic Wave: Moisture and Large-Scale Condensation

DCMIP test 42

Large-scale condensation in a moist version of the JW'06 baroclinic wave leads to an intensification of the baroclinic wave in CAM-FV (1°x1° L30), here at day 9

Provides a first glimpse at the non-linear physics-dynamics interactions in the presence of moisture 1°x1° L30 dx = 110 km

Moist Interactions: Baroclinic Wave

Idealized moist baroclinic wave tests expose the behavior of simulations with complex physical parameterizations

Tests based on Jablonowski and Williamson (2006), Simple-physics: Reed and Jablonowski (2012)

Moist Held-Suarez ('climate-like') Test

Moist Held-Suarez closely mimics Aqua-Planet

Thatcher and Jablonowski, in preparation

Moist Held-Suarez ('climate-like') Test

Moist Held-Suarez closely mimics Aqua-Planet

Thatcher and Jablonowski, in preparation

Dry Held-Suarez with Real Topography: Assessment of the physics-dynamics coupling

NCAR Earth System Laboratory

FIGURE 10. One-year average of vertical velocity (ω) using Held-Suarez forcing and 'real-world' topography using CAM-SE at approximately 2° horizontal resolution (*ne16np4*). Left plot is based standard CAM-SE setting where the sub-grid scale parameterization are computed on the spectral element quadrature grid and the right plot is based on the physics grid version in which tendencies are computed on a 3x3 finite-volume grid inside each element. Note that the physics grid has the same number of degrees of freedom as the quadrature grid in this configuration.

Research and slide by Peter Lauritzen

Extreme Storms: Tropical Cyclones

DCMIP Test 51: Idealized TC on an aqua-planet: Simulations with Simple-Physics

Height-longitude cross section of the wind speed (m/s) at day 10: wide spread in results

Reed and Jablonowski (MWR, 2011) Reed and Jablonowski (James, 2012)

0.5° x 0.5° L30, dx= 55 km

Small-Scale Moist Interactions: Convective Cell

Splitting Supercell Thunderstorm on a Reduced-Radius Sphere (X = 60)

DCMIP – Going Forward

- Should there be another DCMIP, e.g. in June 2016?
- If there is interest, what are the scientific frontiers that we want to explore?
- What are the adequate test cases to answer our open model design questions? We need to address all scales (micro, meso, synoptic, planetary)!
- Open invitation to participate in the planning process
- Should we change the format of DCMIP (e.g. fewer test scenarios run during DCMIP and submission of additional results ahead of time)? Longer? Shorter?
- Do we need stricter rules to determine the 'readiness' of model? The readiness of the DCMIP-2012 models and their mentors varied widely.

DCMIP – Test Cases

- Dry and moist idealized dynamical core test cases have the ability to mimic the complex behavior of the full atmosphere
 - They are relevant
- They give easier access to an improved understanding of the circulation and our modeling choices
- This provides the scientific basis for DCMIP

References

- Reed, K. A., and C. Jablonowski (2011a), An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs, Mon. Wea. Rev., 139, 689–710
- Reed, K. A., and C. Jablonowski (2011b), Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys. Res. Lett., 38, L04 805
- Reed, K. A., and C. Jablonowski (2011c), Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model, J. Adv. Model. Earth Syst., 3, M08002, 16, doi:10.1029/2011MS000076.
- Reed, K. A., and C. Jablonowski (2012), Idealized tropical cyclone simulations of intermediate complexity: a test case for AGCMs, J. Adv. Model. Earth Syst., Vol. 4, M04001, doi: 10.1029/2011MS000099
- Kent, J., P. A. Ullrich and C. Jablonowski (2014), Dynamical Core Model Intercomparison Project: Tracer Transport Test Cases, Quart. J. Roy. Meteorol. Soc., in press
- Zarzycki, C. M., C. Jablonowski and M. A. Taylor (2014), Using Variable Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon. Wea. Rev., Vol. 142, 1221-1239
- Yao, W. and C. Jablonowski (2013), Spontaneous QBO-like Oscillations in an Atmospheric Model Dynamical Core, Geophys. Res. Lett., Vol. 40, 3772-3776, doi:10.1002/grl.50723

References

- Jablonowski, C., P. H. Lauritzen, R. D. Nair and M. Taylor (2008), Idealized test cases for the dynamical cores of Atmospheric General Circulation Models: A proposal for the NCAR ASP 2008 summer colloquium, Technical Report May/29/2008 (download at <u>http://esse.engin.umich.edu/groups/admg/publications.php</u>)
- Jablonowski, C., and D. L. Williamson (2006), A Baroclinic Instability Test Case for Atmospheric Model Dynamical Cores, Quart. J. Roy. Met. Soc., Vol. 132, 2943-2975
- DCMIP shared workspace and DCMIP test case document: <u>http://earthsystemcog.org/projects/dcmip-2012/</u>
- Whitehead, J., C. Jablonowski, J. Kent and R. B. Rood (2014), Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes, Quart. J. Roy. Meteorol. Soc., in review
- Lauritzen. P. H. and J. Thuburn (2012): Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. Quart. J. Roy. Meteor. Soc., Vol. 138, 906–918, DOI:10.1002/qj.986
- Ullrich, P. A., T. Melvin, C. Jablonowski and A. Staniforth (2014), A baroclinic wave test case for deep- and shallow-atmosphere dynamical cores, Quart. J. Roy. Meteorol. Soc., in press