Lagrangian vertical coordinate for UM ENDGame dynamical core

Iva Kavčič, John Thuburn E-mail: I.Kavcic@exeter.ac.uk

CEMPS, University of Exeter

April 10, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Introduction and LVC formulation

2 Test cases

Outline

Introduction and LVC formulation

What and why

Lagrangian vertical coordinate (LVC)

- Moves with the fluid.
- Keeps track of the height of material surfaces (additional prognostic equation for *z* (*r*)).

Why LVC?

- No need to evaluate vertical departure point.
- Elimination of vertical advection terms (and associated errors) from the governing equations and numerical model.
- Reduction of horizontal advection errors (if Lagrangian surfaces lie close to isentropes), better Lagrangian conservation properties.

Limitations and further questions

Figure 7: Showing how strong vertical winds can cause folding

Figure 8: Showing a surface folding into itself

Figure 9: Showing a vertical shear causing folding

- Bending and folding of Lagrangian surfaces over time. [Ken06]
- Difficulty of handling the bottom boundary – use f (θ, z)?
- Reduced vertical resolution in near-neutral stratification.

• Dynamics - physics coupling.

Implementation of LVC in ENDGame

Questions

- Stability and performance of LVC model for nonhydrostatic compressible Euler equations.
- 2 Transfer of model fields from old to new levels
 - Re-initialization of Lagrangian surfaces locations (related to isentropes?), how often?
 - Remapping which method, what quantities (energy, entropy)?
 - Effect of remapping on conservation (mass, momentum, energy) and stability of the model.
- Omparison with the current height-based coordinate version of ENDGame.

Equations

$$\frac{D\mathbf{u}}{Dt} - \mathbf{\Psi} = 0 \qquad (1)$$
No vertical advection: $\frac{D\sigma}{Dt} + \sigma \nabla_s \cdot \mathbf{v} = 0 \qquad (2)$

$$\frac{D\theta}{Dt} = 0 \qquad (3)$$
Additional eqn. for the height of LS: $\frac{Dz}{Dt} = \mathbf{w} \qquad (4)$

$$\mathbf{\Psi} = -2\mathbf{\Omega} \times \mathbf{u} - \theta \nabla \left(\frac{M}{\theta}\right) - \Phi \nabla \ln \theta$$

- Φ geopotential; $\sigma = \rho \frac{r^2}{a^2} \frac{\partial r}{\partial s}$ mass (affected by changes in layer depth).
- $M = c_p T + \Phi = c_p \Pi \theta + \Phi$ Montgomery potential in Helmholtz solver (Π in height-based ENDGame).

LVC ENDGame formulation

- LVC coordinate system: $(\xi_1, \xi_2, \xi_3) = (\lambda, \phi, s)$, see [SW03].
- $s \in [0, 1]$, fixed: $\dot{s} = 0$ ($s = \eta$ in HB ENDGame).
- Variables $F = (r, u, v, w, \theta, \sigma)$.
- Finite-difference: Lat-lon C-grid in horizontal, Lorenz grid in vertical (*Charney-Philips in the height-based (HB) model*).

Semi-Implicit, Semi-Lagrangian (SISL) scheme, $\alpha + \beta = 1$

$$\mathbf{X}_{A}^{n+1} - \mathbf{X}_{D}^{n} = \Delta t \left[\alpha_{\mathbf{X}} \mathbf{u}_{A}^{n+1} + \beta_{\mathbf{X}} \mathbf{u}^{n} \left(\mathbf{X}_{D} \right) \right],$$
(5)

$$F_{A}^{n+1} - F_{D}^{n} = \Delta t \left[\alpha_{F} N \left(F_{A}^{n+1} \right) + \beta_{F} N \left(F_{D}^{n} \right) \right].$$
(6)

 r = a + z needs to be recalculated, as well as r depending terms in ∇ · , ∇, Coriolis, cell areas and volumes.

Grid and solving

- Centered differences.
- Fixed BC: z(1, i, j) = 0, $z(N + 1, i, j) = z_{TOP}$.
- No flux: w(1, i, j) = 0, w(N+1, i, j) = 0.

Iterative solving:

- $F^{(l+1)} = F^{(l)} + F'$,
- Iterations for $F = (r', u', v', w', \sigma', \theta')$,
- Reference state $F^* = F(r)$,
- Helmholtz problem for M' ⇒ backsubstitution for F'
 - \rightarrow solutions for *F*.

Diagnostics: Mass, Energy, Entropy and PV

Total mass (height-based \rightarrow LVC):

$$\mathcal{M} = \int_{V} \rho dV = a^{2} \int_{V} \rho \frac{r^{2}}{a^{2}} \frac{\partial r}{\partial s} \cos \phi d\lambda d\phi ds = a^{2} \int_{V} \sigma A ds \quad (7)$$

Total energy:

$$\mathcal{E} = a^2 \int_V \sigma EAds, \quad E = c_v T + \Phi + 0.5 (u^2 + v^2 + w^2)$$
 (8)

Total entropy:

$$S = c_{\rho}a^{2}\int_{V}\sigma\ln\theta Ads$$
(9)

Potential vorticity:

$$PV = \frac{\nabla \theta \cdot \zeta}{\rho} = \frac{\nabla \theta \cdot (\nabla \times \mathbf{u} + 2\mathbf{\Omega})}{\rho}$$
(10)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Remapping strategies and methods

Strategies (all not including velocity

- \mathcal{M} and \mathcal{E} : remap $\sigma \& \sigma_k E_k \to \text{calculate } E_k \& \theta_k$.
- \mathcal{M} and \mathcal{S} : remap $\sigma \& \sigma_k \ln \theta_k \to \text{calculate } \theta_k$.
- \mathcal{M} and θ_H : remap σ , $\theta = \theta_H + \theta_{NH}$, interpolate θ_{NH} , $(\sigma)_R \rightarrow \theta_H \& \theta_k$.

Methods

- Piecewise parabolic method (PPM, [WA08]).
- Parabolic spline method (PSM, [ZWS06, ZWS07]).
- Edge values estimated from cell averages: **PPM h3, h4, ih4** (implicit, otherwise explicit).
- Boundary conditions: decreasing degree of P_n & one-sided (same degree of P_n, evaluate at different edges).

Outline

1 Introduction and LVC formulation

2 Test cases

Model parameters and initial conditions (IC)

Test cases:

- Solid body rotation (T = 270 K; u = u₀r cos φ/a, u₀ = 40 m/s): breaks with energy-conserving Coriolis discretization from the HB ENDGame, runs normally with simple discretization of Coriolis.
- **<u>Baroclinic wave</u>** ([JW06]): $T_0 = 288 K$, $\Gamma = 0.005 K/m$, $u_0 = 35 m/s$, $u'(\lambda, \varphi, s) = u_p \exp\left[-(r/R)^2\right]$.

Parameters:

- Horizontal (p = 7): $nx = 2^p = 128$; $ny = 2^{(p-1)} = 64$, nyp = ny + 1 = 65 for v.
- Vertical: $z_{TOP} = 32$ km, nz = 32 (u, v, σ , θ) or 33 (z, w); Uniform ($\Delta z = 1$ km) or quadratically stretched ($\Delta z = 350$ m to 1.2 km) grid.
- $\delta_v = 1$, Centered scheme ($\alpha = \beta = 0.5$); Iterations: $n_{out} = 4$, $n_{in} = 1$ (T4x1); $n_{out} = 2$, $n_{in} = 2$ (T2x2).

・ロト・西ト・ヨト・ヨー もんぐ

LVC's bad and good

Table 1: BW case breaking times in days (p = 7, nx = 128, ny = 64, nz = 32, uniform grid, npass = 1 in Helmholtz solver)

$Case \setminus dt$	1200s (20min)	1800s (30min)	2400s (40min)	3600s (60min)
T4x1	30.29	29.44	28.94	28.50
T2x2	29.97	29.27	28.50	26.67
T4×1, <i>u</i> ′	7.11	7.27	6.97	6.75
T2×2, <i>u</i> ′	6.89	6.88	6.69	6.46

Table 2: Comparison of runtimes in minutes (dt = 2400s, nsteps = 100, nz = 32, uniform grid, npass = 1 in Helmholtz solver) for height-based and LVC ENDGame (without and with remapping in every time step).

$n_{out} \times n_{in}$	р	Height-based	LVC	LVC remap
T4x1	7	27:35 (99.8%)	10:29 (99.8%)	11:06 (99.8%)
	6	6:36 (99.8%)	2:34 (99.7%)	2:40 (99.8%)
T2x2	7	15:13 (99.8%)	7:22 (98.6%)	7:52 (99.8%)
	6	3:46 (99.7%)	1:46 (99.7%)	1:54 (99.7%)

Introduction and LVC formulation

Test cases

Summary

BW test case, u' run: LVC z and σ , step 250

Introduction and LVC formulation

Test cases

Summary

BW test case, u' run: LVC and height-based ρ , step 250

BW test case, u' run: LVC and height-based u, step 250

Introduction and LVC formulation

Test cases

BW test case, u' run: LVC and height-based v, step 250

Figure 4: v surface (LVC left, HB right): step 250, uniform grid, T4x1 run, $\Delta t = 2400 s$, two steps before breaking.

Introduction and LVC formulation

Test cases

Summary

BW test case, u' run: LVC and height-based θ , step 250

BW test case, u' run: LVC and height-based PV, step 250

Application of remapping

- Remapping done column by column, every *n* timesteps, to initial *z* levels, (cubic) interpolation for velocity.
- Sum of cell averages (σ , $\sigma_k E_k$, etc.) preserved before and after remapping.
- Different edge values estimators do not really make difference; more often remapping gives better results.

Does not prevent model breaking, just delays it.

Table 3: BW remapping case breaking times in days (p = 7, nx = 128, ny = 64, nz = 32, dt = 1200, uniform grid, npass = 1 in Helmholtz solver), remapping every step.

$Case \setminus Remap$	No remap	Energy	Entropy	Hydtheta
T4x1	30.29	39.88	36.81	27.25
T4×1, <i>u</i> ′	7.11	10.88	11.06	10.72

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

BW test case, u' remap run,: LVC σ , step 250

Figure 7: LVC ENDGame, σ surface after (right) energy remapping, and differences (left): step 250, uniform grid, T4x1 run, $\Delta t = 2400 s$.

E 990

BW test case, u' remap run: LVC u, step 250

diffU at h = 1500 and 6.9444 days 1.5 1.5 0.05 18 16 14 0.5 0.5 12 n LAT LAT 0 10 8 -0.5 -0.5 6 -0.05 Δ -1 2 -1.5 -15 Λ 5 6 0 2 3 5 6 2 3 LON LON

Figure 8: *u* surface after (right) energy remapping, and differences (left): step 250, uniform grid, T4x1 run, $\Delta t = 2400 s$. ・ロット 全部 マート・ キャー э

U at h = 1500 and 6.9444 days

BW test case, u' remap run: LVC v, step 250

diffV at h = 1500 and 6.9444 days 1.5 1.5 0.035 0.03 3 0.025 0.5 0.02 0.5 0.015 LAT ¥-0 -0.01 0.005 -1 -0.5 -0.5 0 -2 -0.005 -1 -1 -3 -0.01 -0.015 -1.5 -1.5 2 3 5 6 2 5 6 3 LON LON

Figure 9: v surface after (right) energy remapping, and differences (left): step 250, uniform grid, T4x1 run, $\Delta t = 2400 s$. ・ロト ・聞 ト ・ヨト ・ヨト э

V at h = 1500 and 6.9444 days

BW test case, u' remap run: LVC θ , step 250

Outline

2 Test cases

Summary

- Benefits of LVC:
 - No vertical advection calculation, vertical component of departure point predicted ⇒ significantly reduced running time in comparison with HB ENDGame.
 - Cost of remapping (so far) not so significant.
- 3D LVC able to maintain SBR with simple Coriolis discretization; breaks for BW case even with the remapping.
- Issues of LVC:
 - Stability for BW case in formulation, remapping or both?
 - Choice of optimal target levels for remapping (currently to initial levels).

References I

- [JW06] C. Jablonowski and D. L. Williamson. A baroclinic instability test case for atmospheric model dynamical cores. Q. J. Roy. Meteorol. Soc., 132:2943–2975, 2006.
- [Ken06] J. Kent. Folding and steepening timescales for atmospheric lagrangian surfaces. Master's thesis, University of Exeter, 2006.
- [SW03] A. Staniforth and N. Wood. The deep-atmosphere Euler equations in a generalized vertical coordinate. *Mon. Weather Rev.*, 131:1931–1938, 2003.
- [WA08] L. White and A. Adcroft. A high-order finite volume remapping scheme for nonuniform grids: The piecewise quartic method (PQM). J. Comput. Phys., 227:7394-7422, 2008.
- [ZWS06] M. Zerroukat, N. Wood, and A. Staniforth. The Parabolic Spline Method (PSM) for conservative transport scheme problems. Int. J. Numer. Meth. Fluids, 11:1297–1318, 2006.
- [ZWS07] M. Zerroukat, N. Wood, and A. Staniforth. Application of the Parabolic Spline Method (PSM) to a multi-dimensional conservative transport scheme (SLICE). J. Comput. Phys., 225:935–948, 2007.