A Dynamically Adaptive Wavelet-based Method for Geophysical Flows on the Sphere

Nicholas Kevlahan

Department of Mathematics & Statistics

PDEs on the Sphere 2014

Nicholas Kevlahan (McMaster University)

Adaptive wavelets on the sphere

PDEs on the Sphere 2014 1 / 25

Collaborators

Matthias Aechtner

PhD student, Computational Science and Engineering McMaster University

Thomas Dubos

Laboratoire de Météorologie Dynamique École Polytechnique, France

2 / 25

Discrete wavelet transform on the sphere

TRiSK scheme (Thuburn et al. 2010)

Staggered dual grids for pressure and vorticity (Velocity at cell edges) Discrete shallow water equations

$$\begin{array}{lll} \displaystyle \frac{\partial h_i}{\partial t} & = & -[\operatorname{div}(F_e)]_i \\ \displaystyle \frac{\partial \mathbf{u}_e}{\partial t} & = & F_e^{\perp} \hat{q}_e - [\operatorname{grad}(B_i)]_e \end{array}$$

Scale commutation properties of differential operators

Commutation diagram

Scale commutation properties of differential operators

Commutation relations

$$\begin{array}{lll} R_{h}^{j} \circ \operatorname{div}^{j+1} &=& \operatorname{div}^{j} \circ R_{F}^{j} & \textit{conserve mass} \\ \operatorname{curl}^{j} \circ R_{\mathbf{u}}^{j} &=& R_{\zeta}^{j} \circ \operatorname{curl}^{j+1} & \textit{conserve circulation} \\ \operatorname{grad}^{j} \circ R_{B}^{j} &=& R_{\mathbf{u}}^{j} \circ \operatorname{grad}^{j+1} & \textit{no spurious vorticity} \end{array}$$

Volume penalization of shallow water equations

Variable porosity

$$\phi(x) = \alpha + (1 - \chi(x))(1 - \alpha), \quad \alpha \ll 1$$

mask $\chi = 1$ in solid and $\chi = 0$ in fluid.

Volume penalization of shallow water equations

Euler–Poincaré theory

Applying Hamilton's principle of least action to $\mathcal{L} = \int \frac{1}{2} h(|\mathbf{u}|^2 - gh) \phi \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t$ gives

$$\begin{aligned} \frac{\partial}{\partial t}\tilde{h} + \operatorname{div}\tilde{F} &= 0\\ \frac{\partial}{\partial t}\tilde{F} + \operatorname{div}\left(\tilde{F}\otimes\mathbf{u}\right) + \operatorname{grad}\left(\frac{1}{2}g\frac{\tilde{h}}{\phi(x)}\right) &= 0 \end{aligned}$$

where $\tilde{h} = \phi(x)h$, $\tilde{F} = \tilde{h}\mathbf{u}$

Volume penalization of shallow water equations

Euler–Poincaré theory

Applying Hamilton's principle of least action to $\mathcal{L} = \int \frac{1}{2} h(|\mathbf{u}|^2 - gh) \phi \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t$ gives

$$\begin{aligned} \frac{\partial}{\partial t}\tilde{h} + {\rm div}\tilde{F} &= 0\\ \frac{\partial}{\partial t}\tilde{F} + {\rm div}\left(\tilde{F}\otimes {\bf u}\right) + {\rm grad}\left(\frac{1}{2}g\frac{\tilde{h}}{\phi(x)}\right) &= -\frac{1}{\eta}\chi(x){\bf u} \end{aligned}$$

where $\tilde{h} = \phi(x)h$, $\tilde{F} = \tilde{h}\mathbf{u}$; $\eta \ll 1$ is the permeability due to viscosity.

Volume penalization of shallow water equations

Accuracy and scaling of penalization

- Error in h is $O(\alpha)$ (from reflectance at boundary).
- Error in **u** is $O(\eta^{1/2})$ (from Navier–Stokes penalization).
- Method is $O(\Delta x)$ since $\Delta x \propto \eta^{1/2}$.

Volume penalization of shallow water equations

Accuracy and scaling of penalization

- Error in h is $O(\alpha)$ (from reflectance at boundary).
- Error in **u** is $O(\eta^{1/2})$ (from Navier–Stokes penalization).
- Method is $O(\Delta x)$ since $\Delta x \propto \eta^{1/2}$.

Use dynamic local grid refinement (*h*-refinement).

Extension to icosahedral C-grid on sphere: flux restriction

Small overlapping areas due to the non-uniform C-grid structure on the sphere.

Extension to icosahedral C-grid on sphere: flux restriction

Fine and coarse scale cells to calculate flux restriction through coarse edge indicated by arrow. A_{lm}^{j+1} and A_{lm}^{j+1} are partial areas.

Nicholas Kevlahan (McMaster University)

Adaptive wavelets on the sphere

Hybrid data structure: irregular tree data structure with regular patches

Hybrid data structure: irregular tree data structure with regular patches

• Icosahedron divided into 10 regular lozenge domains.

Hybrid data structure: irregular tree data structure with regular patches

- Icosahedron divided into 10 regular lozenge domains.
- Domains refined adaptively into sub-domains.

Hybrid data structure: irregular tree data structure with regular patches

- Icosahedron divided into 10 regular lozenge domains.
- Domains refined adaptively into sub-domains.
- Lowest level locally is regular 4×4 patch.

Nicholas Kevlahan (McMaster University)

Adaptive wavelets on the sphere

Computational grid with ghost cells

 4×4 patch is regular grid of elements. Element is one node, two triangles and three edges. Ghost points added at edges of sub-domain.

Parallelization

- Sub-domains distributed to different cores.
- Ghost points added and values communicated as necessary for operators.
- Metis graph partitioner improves load balancing.
- Communications occur at each trend computation and at each grid adaptation step.
- Where possible communication is non-blocking.

Grid resolution

J	N	d.o.f	$\Delta x \ [km]$	T
5	10,242	40,962	239.8	51
6	40,962	163,842	119.9	101
7	163,842	655,362	60.0	202
8	655,362	2,621,442	30.0	404
9	2,621,442	10,485,762	15.0	809
10	10,485,762	41,943,042	7.5	1619
11	41,943,042	167,772,162	3.7	3238
12	167,772,162	671,088,642	1.9	6476

Grid resolution

J	N	d.o.f	$\Delta x \ [km]$	T
5	10,242	40,962	239.8	51
6	40,962	163,842	119.9	101
7	163,842	655,362	60.0	202
8	655,362	2,621,442	30.0	404
9	2,621,442	10,485,762	15.0	809
10	10,485,762	41,943,042	7.5	1619
11	41,943,042	167,772,162	3.7	3238
12	167,772,162	671,088,642	1.9	6476

• Optimize coarse grid, e.g. J = 5 (Xu 2006; Heikes & Randall 1995).

Grid resolution

J	N	d.o.f	$\Delta x \ [km]$	T
5	10,242	40,962	239.8	51
6	40,962	163,842	119.9	101
7	163,842	655,362	60.0	202
8	655,362	2,621,442	30.0	404
9	2,621,442	10,485,762	15.0	809
10	10,485,762	41,943,042	7.5	1619
11	41,943,042	167,772,162	3.7	3238
12	167,772,162	671,088,642	1.9	6476

• Optimize coarse grid, e.g. J = 5 (Xu 2006; Heikes & Randall 1995).

• Finer grids by recursive edge-bisection, e.g. $j = 6, 7, 8, 9, 10, \ldots$

Grid resolution

J	N	d.o.f	$\Delta x \ [km]$	T
5	10,242	40,962	239.8	51
6	40,962	163,842	119.9	101
7	163,842	655,362	60.0	202
8	655,362	2,621,442	30.0	404
9	2,621,442	10,485,762	15.0	809
10	10,485,762	41,943,042	7.5	1619
11	41,943,042	167,772,162	3.7	3238
12	167,772,162	671,088,642	1.9	6476

- Optimize coarse grid, e.g. J = 5 (Xu 2006; Heikes & Randall 1995).
- Finer grids by recursive edge-bisection, e.g. $j = 6, 7, 8, 9, 10, \ldots$
- Local adaptive grid scale controlled by error tolerance ε .

Parallel scaling

• 5.0 times slower per active node than non-adaptive pseudo-spectral solver swbob.

- 5.0 times slower per active node than non-adaptive pseudo-spectral solver swbob.
- 3.4 times slower per active node than non-adaptive TRiSK.

- 5.0 times slower per active node than non-adaptive pseudo-spectral solver swbob.
- 3.4 times slower per active node than non-adaptive TRiSK.
- Overall code is 3 to 10 times faster than pseudo-spectral and 4 to 15 times faster than non-adaptive TRiSK due to compression.

Williamson test case 2: error control

Unstable zonal jet on the sphere (Galewsky et al. 2004)

Tolerance $\epsilon = 5 \times 10^{-3}$ and J = 9. Height perturbation at 2, 4 and 6 hours and relative vorticity at 4, 5 and 6 days. (- - -) is non-adaptive J = 10 reference simulation, but results are mostly indistinguishable.

Nicholas Kevlahan (McMaster University)

Adaptive wavelets on the sphere

Unstable zonal jet on the sphere (Galewsky et al. 2004)

Viscous shallow water turbulence

Nicholas Kevlahan (McMaster University)

Adaptive wavelets on the sphere

PDEs on the Sphere 2014 22 / 25

2004 Indonesian tsunami: 1.9 km resolution

2004 Indonesian tsunami: 1.9 km resolution

Max wave height Arrival time $(\geq 6 \ cm \ wave)$ 0.1

Nicholas Kevlahan (McMaster University)

Conclusions

Spherical wavelets for adaptivity

- Multiscale representation
- Dynamic adaptivity controlled by local error estimate or static nesting
- Adaptivity overlay on existing TRiSK discretization
- Hybrid data structure
- Efficient parallelization using mpi and metis.
- Volume penalization for coastlines in ocean model

Conclusions

Spherical wavelets for adaptivity

- Multiscale representation
- Dynamic adaptivity controlled by local error estimate or static nesting
- Adaptivity overlay on existing TRiSK discretization
- Hybrid data structure
- Efficient parallelization using mpi and metis.
- Volume penalization for coastlines in ocean model

Future work

• 3-D hydrostatic extension, subgrid parameterizations

Conclusions

Spherical wavelets for adaptivity

- Multiscale representation
- Dynamic adaptivity controlled by local error estimate or static nesting
- Adaptivity overlay on existing TRiSK discretization
- Hybrid data structure
- Efficient parallelization using mpi and metis.
- Volume penalization for coastlines in ocean model

Future work

• 3-D hydrostatic extension, subgrid parameterizations

Details

Q.J.R. Meteorol. Soc. (2013) DOI:10.1002/qj.2097

arxiv.org/abs/1404.0405

Nicholas Kevlahan (McMaster University)