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Method

Discrete wavelet transform on the sphere

vertex values ⇒ vertex values ⇒ vertex values restriction
⇓ ⇓ high-pass filter

interpolation errors interpolation errors wavelets

interpolation errors interpolation errors wavelets
⇓ ⇓ reconstruction

vertex values ⇐ vertex values ⇐ vertex values prolongation
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Method

TRiSK scheme (Thuburn et al. 2010)

D
v

V W

U

Staggered dual grids for
pressure and vorticity
(Velocity at cell edges)

Discrete shallow water equations

∂hi
∂t = −[div(Fe)]i
∂ue
∂t = F⊥

e q̂e − [grad(Bi)]e

Fe = ĥeue is thickness flux
F⊥

e is perpendicular to Fe
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Method

Scale commutation properties of differential operators
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Commutation diagram
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Method

Scale commutation properties of differential operators

Commutation relations

Rj
h ◦ div

j+1 = divj ◦ Rj
F conserve mass

curlj ◦ Rj
u = Rj

ζ ◦ curl
j+1 conserve circulation

gradj ◦ Rj
B = Rj

u ◦ gradj+1 no spurious vorticity
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Method

Volume penalization of shallow water equations

Variable porosity

φ(x) = α+ (1− χ(x))(1− α), α� 1

mask χ = 1 in solid and χ = 0 in fluid.
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Method

Volume penalization of shallow water equations

Euler–Poincaré theory
Applying Hamilton’s principle of least action to
L =

∫ 1
2h(|u|2 − gh)φ dx dy dt gives

∂

∂t h̃ + divF̃ = 0

∂

∂t F̃ + div
(
F̃ ⊗ u

)
+ grad

(
1
2g h̃
φ(x)

)
= 0

where h̃ = φ(x)h, F̃ = h̃u
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∂

∂t h̃ + divF̃ = 0

∂

∂t F̃ + div
(
F̃ ⊗ u

)
+ grad

(
1
2g h̃
φ(x)

)
= −1

η
χ(x)u

where h̃ = φ(x)h, F̃ = h̃u; η � 1 is the permeability due to viscosity.
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Method

Volume penalization of shallow water equations

Accuracy and scaling of penalization
Error in h is O(α) (from reflectance at boundary).
Error in u is O(η1/2) (from Navier–Stokes penalization).
Method is O(∆x) since ∆x ∝ η1/2.

Use dynamic local grid refinement (h-refinement).
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Method

Extension to icosahedral C-grid on sphere: flux restriction
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Small overlapping areas due to the non-uniform C-grid structure on the sphere.
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Method

Extension to icosahedral C-grid on sphere: flux restriction

Aj+1
km

l2j+4

l2j−4

l2j+1

l2j−1

k

l2jm2j

m2j+2 m2j+1

m2j−2

m2j−1

Aj+1
lm

Fine and coarse scale cells to calculate flux restriction through coarse edge indicated by
arrow. Aj+1

km and Aj+1
lm are partial areas.
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Method

Hybrid data structure: irregular tree data structure with
regular patches

Icosahedron divided into 10 regular lozenge domains.
Domains refined adaptively into sub-domains.
Lowest level locally is regular 4× 4 patch.
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Method

Computational grid with ghost cells
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4 × 4 patch is regular grid of elements. Element is one node, two triangles and three
edges. Ghost points added at edges of sub-domain.

Nicholas Kevlahan (McMaster University) Adaptive wavelets on the sphere PDEs on the Sphere 2014 13 / 25



Method

Parallelization

Sub-domains distributed to different cores.
Ghost points added and values communicated as necessary for
operators.
Metis graph partitioner improves load balancing.
Communications occur at each trend computation and at each grid
adaptation step.
Where possible communication is non-blocking.
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Results
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Results

Grid resolution

J N d.o.f ∆x [km] T
5 10,242 40,962 239.8 51
6 40,962 163,842 119.9 101
7 163,842 655,362 60.0 202
8 655,362 2,621,442 30.0 404
9 2,621,442 10,485,762 15.0 809

10 10,485,762 41,943,042 7.5 1619
11 41,943,042 167,772,162 3.7 3238
12 167,772,162 671,088,642 1.9 6476

Optimize coarse grid, e.g. J = 5 (Xu 2006; Heikes & Randall 1995).
Finer grids by recursive edge-bisection, e.g. j = 6, 7, 8, 9, 10, . . .
Local adaptive grid scale controlled by error tolerance ε.
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Results

Parallel scaling
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Results

Computational performance and adaptive overhead

5.0 times slower per active node than non-adaptive pseudo-spectral
solver swbob.
3.4 times slower per active node than non-adaptive TRiSK.
Overall code is 3 to 10 times faster than pseudo-spectral and 4 to 15
times faster than non-adaptive TRiSK due to compression.
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Results

Williamson test case 2: error control
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Results

Unstable zonal jet on the sphere (Galewsky et al. 2004)

Height Vorticity
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Tolerance ε = 5 × 10−3 and J = 9. Height perturbation at 2, 4 and 6 hours and relative
vorticity at 4, 5 and 6 days. (- - -) is non-adaptive J = 10 reference simulation, but
results are mostly indistinguishable.
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Results

Unstable zonal jet on the sphere (Galewsky et al. 2004)
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Results

Viscous shallow water turbulence

Relative vorticity Level
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Results

2004 Indonesian tsunami: 1.9 km resolution
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Results

2004 Indonesian tsunami: 1.9 km resolution

Max wave height Arrival time ( ≥ 6 cm wave)
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Conclusions

Conclusions

Spherical wavelets for adaptivity
Multiscale representation
Dynamic adaptivity controlled by local error estimate or static nesting
Adaptivity overlay on existing TRiSK discretization
Hybrid data structure
Efficient parallelization using mpi and metis.
Volume penalization for coastlines in ocean model

Future work
3-D hydrostatic extension, subgrid parameterizations

Details
Q.J.R. Meteorol. Soc. (2013) DOI:10.1002/qj.2097

arxiv.org/abs/1404.0405
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