Idealized Nonhydrostatic Supercell Simulations in the Global MPAS

Joe Klemp, Bill Skamarock, and Sang-Hun Park National Center for Atmospheric Research Boulder, Colorado

Supercell Thunderstorms

Typical characteristics:

Supercell Thunderstom Overshooling Top Memmatus Warm molet updrafts Flanking Line Wall Could Wall Could Heavy Rain Gust Front

- Strong, long-lived convective cells
- Deep, persistent rotating updrafts
- May propagate tranverse to the mean winds
- May split into two counter-rotating storms
- Produce most of the world's intense tornadoes

3 April 1964 Oklahoma Splitting Supercell Storms

ala 8 Miaragogla Matagralagy Division / NCAR

Wilhelmson & Klemp (JAS, 1982)

3 km Global MPAS-A Simulation GOES East, 2010-10-27 00 UTC 2010-10-23 Initialization Vertical Velocity at 200 hPa 4 day forecast valid 2010-10-27 03 UTC Surface Temperature splitting Maximum Reflectivity supercell 50N thunderstorms 🖌 50 km 10 m/s 8 45N Cold-pools from isolated storms ahead 40N of the cold front 90W 35N 85W 80W 295.5 297 298.5 300 301.5 303 304.5 K 30N 95W 90W 85W 80W 75W Mesoscale & Microscale Meteorology Division / NCAR 75 dBZ 15 55 65 5 25 35 45

Simulations on a Reduced-Radius Earth Sphere

Observations:

- Global grids required to resolve nonhydrostatic phenomena are often beyond the realm of feasibility (and not cost effective).
- Simulations on a reduced-radius sphere permit nonhydrostatic resolutions at reasonable computational cost.
- Phenomena on a reduced-radius earth sphere may have little physical relevance to the real atmosphere.

Our philosophy:

- Idealized small-planet simulations should exhibit strong similarity to physically relevant geophysical flows
- For nonhydrostatic phenomena good correspondence with flow
 in a Cartesian geometry

MPAS - Atmosphere

Equations

- Fully compressible nonhydrostatic equations
- Permits *explicit* simulation of clouds

Solver Technology

- C-grid centroidal Voronoi mesh
- Unstructured grid permits conformal variable-resolution grids
- Most of the techniques for integrating the nonhydrostatic equations come from WRF.

Supercell Simulation

- Initial sounding representative of supercell environment
- Convection initiated with low-level warm bubble (3° K)
- Minimal model physics (simple Kessler microphysics)
- Constant 2nd order viscosity (500 m²/s) permits convergence
- z_t = 20 km, Δz = 500 m, No Coriolis force (f = 0)

B

 \overline{u}_{13}

 (u_{15})

 \mathcal{U}_{5}

 \mathcal{U}_4

Initial Sounding for Supercell Tests

Based on historical supercell simulations (Weisman and Klemp, 1982, 1984)

Balanced Initial Conditions on the Sphere (f = 0)

Mesoscale & Microscale Meteorology Division / NCAR

Kessler Cloud Microphysics

potential $\frac{d\theta}{dt}$ temperature $\frac{d\theta}{dt}$ water vapor $\frac{dq_v}{dt}$ mixing ratio $\frac{dq_v}{dt}$ cloud water $\frac{dq_c}{dt}$ mixing ratio $\frac{dq_r}{dt}$ rain water $\frac{dq_r}{dt}$ mixing ratio $\frac{dq_r}{dt}$

$\frac{d\theta}{dt} = -$	$-rac{L}{c_p\pi} \Big(rac{dq_{vs}}{dt}\Big)$	$+E_r\Big)$			
$\frac{lq_v}{dt} =$	$rac{dq_{vs}}{dt}$	$+E_r$			
$\frac{lq_c}{dt} =$	$-rac{dq_{vs}}{dt}$	-	$-A_r$ -	$-C_r$	
$\frac{lq_r}{dt} =$		$-E_r$ -	$+A_r$ -	$+ C_r -$	$-V_r rac{dq_r}{dz}$
	cloud evap. cond.	rain evap.	rain auto conv.	rain coll.	rain fall

Kessler subroutine (~40 lines of code) computes increments to θ , q_v , q_c , q_r at the end of each time step

Supercell Simulations, MPAS & Reference Cloud Model

- Full MPAS model code used for idealized simulations
- Grid generated on flat plane with periodic boundaries

Vertical velocity contours at 1, 5, and 10 km (c.i. = 3 m/s) 30 m/s vertical velocity surface shaded in red Rainwater surfaces shaded as transparent shells Perturbation surface temperature shaded on baseplane

500 m Rectangular Grid

~500 m MPAS

Mesoscale & Microscale Meteorology Division / NCAR

Vertical Velocity w at 2 h, z = 5 km

Rain Water q_v at 2 h, z = 5 km

Vertical Velocity w at 2 h, z = 2.5 km

Supercell Testcase- Summary

- Realistic supercell storms can be simulated in an idealized atmospheric environment with simple physics.
- Good correspondence between simulation on reduced radius sphere (X = 120) and results in a Cartesian geometry.
- Grid size Δ ~ 1 km retains much of the supercell structure obtained with Δ ~ 500 m.
- Further simulations needed to explore behavior as resolution is further reduced.

