Solutions of 3-D Coordinate Surfaces of an Orthogonal Terrain-Following Coordinate and its Preliminary 2-D Advection Experiments

Jinxi Li', Yiyuan Li', Bin Wang1,2

1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 100029

2 Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science,
Tsinghua University, Beijing, China, 100084
2014.4.7
Y. Li, B. Wang, D. Wang, J. Li, and L. Dong: An orthogonal terrain-following coordinate and its preliminary tests using 2-D Idealized advection experiments, 2014, under review for GMD.

Outline

- Background
- Solutions of 3-D Coordinate Surfaces of an Orthogonal Terrain-Following Coordinate
- 2-D Advection Experiments
- Conclusions
 Background

A- Background

A. 1 Importance of the numerical model

Atmospheric model

- Weather forecast
- Climate simulation
- ...
- One of the most important parts of an atmospheric model
- Prediction of wind, pressure and so on
- ...

Vertical coordinate

- An essential part of dynamical core
- Choice of vertical coordinate is the most important aspect of designing a model

Griffies et al. (2000); Steppeler et al. (2003); Ji et al. (2005); Andrew Staniforth (2006); Staniforth and Wood (2008)

A- Background

A. 2 The development of vertical coordinate

```
Z coordinate - Richardson (1922)
P coordinate - Sutcliffe and Godart (1947)
O coordinate - Shapiro et al. (1973) eliminate the computational errors of vertical motion
```

Coordinate plane intersects with the terrain \rightarrow initialize the grid above the terrain \rightarrow computational errors

Terrain-following σ coordinate
Low boundary \rightarrow coordinate surface

- Phillips (1957); Gal-Chen and Somerville (1975)

Computational errors of pressure gradient and advection

A- Background

A. 3 The problems of sigma coordinate

Pressure gradient error

- Interpolation method

Advection error

- Hybrid σ coordinate

Non-orthogonal

 vertical grid- Non-orthogonal transformation

Our research:

$\Downarrow 3$-D solutions of coordinate surfaces of OS-coordinate
\diamond Compare the OS-coordinate with the hybrid σ-coordinate

- Transformation method
- Li et al., 2012

IOाIOwIIg coordinate in 2-D

- Sharman et al.,1988

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 0 Design of an orthogonal terrain-following coordinate

$$
\begin{aligned}
& i_{0}=\cos b \lambda \cdot i-\sin b \theta \sin b \lambda \cdot j-\cos b \theta \sin b \lambda \cdot k \\
& j_{0}=\cos b \theta \cdot j-\sin b \theta \cdot k \\
& k_{0}=\sin b \lambda \cdot i+\sin b \theta \cos b \lambda \cdot j+\cos b \theta \cos b \lambda \cdot k
\end{aligned}
$$

2-D schematic of the coordinate rotation
Basis vectors in OS-coordinate

	$\int \frac{\partial x^{\prime}}{\partial x}=\cos b \lambda$	$\int \frac{\partial y^{\prime}}{\partial x}=0$	$\left(\frac{\partial \sigma}{\partial x}=\sin b \lambda\right.$
Equations of each three coordinate surface:	$\frac{\partial x^{\prime}}{\partial y}=-\sin b \theta \sin b \lambda$	$\left\{\frac{\partial y^{\prime}}{\partial y}=\cos b \theta\right.$	$\left\{\frac{\partial \sigma}{\partial y}=\sin b \theta \cos b \lambda\right.$
	$\frac{\partial x^{\prime}}{\partial z}=-\cos b \theta \sin b \lambda$	$\frac{\partial y^{\prime}}{\partial z}=-\sin b \theta$	$\frac{\partial \sigma}{\partial z}=\cos b \theta \cos b \lambda$

$$
\cos \theta=\frac{1}{\sqrt{1+H_{y}^{2}}}, \cos \lambda=\frac{\sqrt{1+H_{y}^{2}}}{\sqrt{1+H_{x}^{2}+H_{y}^{2}}}, \cos \theta^{\prime}=\frac{1}{\sqrt{1+H_{x}^{2}}}, \cos \lambda^{\prime}=\frac{\sqrt{1+H_{x}^{2}}}{\sqrt{1+H_{x}^{2}+H_{y}^{2}}}
$$

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 1 Idea of solving 3-D coordinate surfaces

1. Construct the partial differential equations (PDEs)
of each coordinate surfaces

Forward difference

2. Discrete the previous PDEs to obtain the linear algebraic equations (LAEs)
3. Obtain the numerical solutions of LAEs, which
is exactly the coordinate surfaces

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 2 An example of solving the sigma coordinate surface

$\sin \theta=\frac{H_{y}}{\sqrt{1+H_{y}^{2}}}, \sin \lambda=\frac{H_{x}}{\sqrt{1+H_{x}^{2}+H_{y}^{2}}}$

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 3 Coordinate surfaces of the OS-coordinate in 3-D

Conclusion:
1.Each two coordinate surfaces intersect orthogonally;
2.Intersection lines between every two coordinate surfaces are curves instead of lines.

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 4 Vertical variation of the σ-levels in the OS-coordinate

Conclusion:
y
Preserve the benefits of classic sigma coordinate

- Bottom σ-level coincides with the terrain
- Top σ-level becomes flat at the top of the model
- Slopes of the σ-levels decrease with increasing height

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 5 The orthogonality of 3-D numerical solutions of coordinate surfaces

Obtain the normal vectors of each coordinate surface via every grid point

Calculate the intersection angle between each two normal vectors

Calculate the
orthogonality using those intersection angles

B- Solutions of 3-D Coordinate Surfaces of OS-coordinate

B. 6 The orthogonality of the points on the coordinate surfaces of the OScoordinate at the same height

The Orthogonality of the 3-D Coordinate Surfaces of the OS-coordinate

Range of angle in different colors:
Red: 80-100
Blue: $\mathbf{7 0 - 8 0}{ }^{\circ}$ or $100-110^{\circ}$
Green: $60-70^{\circ}$ or $110-120^{\circ}$

Conclusion:

1. 70% of all the points on a coordinate surfaces is quasi-orthogonal.
2.The most non-orthogonal angles appear above the steepest terrain.

B. 7 A summary in short

We can do it

- Solve out the solutions of every coordinate surfaces in OS-coordinate in 3-D

But it is not good enough now

- Only 70\% of points is nearly orthogonal at present
- Most non-orthogonal angles appear above the steepest terrain

However it can be improved

- Modify the PDEs of each coordinate surface
- Use other discretization method to obtain the LAEs
- Use high-order methods to solve the LAEs

2-D Advection Experiments

C- 2-D Advection Experiments

C. 1 Schar-type 2-D linear advection experiments

(reproduce the experiments designed by Schär et al., 2002)

- OS-coordinate VS the corresponding hybrid σ-coordinate
- Wavelike terrain

$$
\frac{q_{i, k}^{n+1}-q_{i, k}^{n-1}}{2 \Delta t}+u^{\prime} \frac{q_{i+1, k}^{n}-q_{i-1, k}^{n}}{2 \Delta X}+w^{\prime} \frac{q_{i, k+1}^{n}-q_{i, k-1}^{n}}{2 \Delta Z}=0
$$

The colored contours in the right panel represent the tracer q with the contour interval of 0.1 , and the thick black curve, the wavelike terrain.

C- 2-D Advection Experiments

C. 2 Computational mesh in OS-coordinate and corresponding hybrid σ-coordinate

Two sets of comparable experiments: (similar slopes of vertical layers in the same row)

First row: steep slope of vertical layers CsHybrid1, OsBr1

Second row: smooth slope of vertical layers CslHybrid2, OsBr2

Computational Mesh in the Hybrid Sigma-Coordinate and the OS-coordinate

(d) OsBr 2

Comparison followed the three aspects:

- The numerical solutions
- Root mean square errors (RMSEs)
- RMSEs reduction by the OS-coordinate

C- 2-D Advection Experiments

C. 3 Numerical Solutions at three times

Hybrid o-coordinate

Conclusion:
Colored contours are the tracer q, with the contour interval of 0.1.

1. RMSE in OS-coordinate is smaller than that in corresponding hybrid σ-coordinate
2. At the end of the advection, the shape of the tracer in CsHybrid1 still has a large deformation; the shape of the tracer in OsBr 1 is almost recovered.

C- 2-D Advection Experiments

C. 4 RMSEs of all five coordinates

Black :

Classic o-coordinate

Blue and sky-blue :
hybrid σ-coordinate

Conclusion:

The RMSEs in the OS-coordinate is much smaller compared with the corresponding hybrid σ-coordinate.

C- 2-D Advection Experiments

C. 5 RMSEs reduction by the OS-coordinate

Experiments	RMSEs		RMSEs reduction by the OS-coordinate	
	average	maximum	average	maximum
CsHybrid1	0.015	0.035	26.9%	30.5%
OsBr1	0.011	0.024		
CsHybrid2	0.000068	0.00023	25.5%	30.4%
OsBr2	0.000051	0.00016		

C- 2-D Advection Experiments

C. 6 A summary in short

	Conclusion (compared with the corresponding hybrid σ-coordinate)
Numerical solutions	The shape of the tracer in OS-coordinate can be preserved at the end of the advection
RMSE	Much smaller in OS-coordinate

 Conclusion

D- Conclusion

D. 1 Solutions of 3-D coordinate surfaces of OS-coordinate

We can do it

- Solve out the solutions of coordinate surfaces in OScoordinate in 3-D
- Only 70\% of points is nearly
orthogonal at present
But it's not good enough now
- Most non-orthogonal angels are above the steepest terrain

- Modify the PDEs

However it can be improved

- Use other discretization method to obtain the LAEs

- Use high-order method to solve the LAEs

D- Conclusion

D. 2 2-D advection experiments

1. The RMSEs in the OS-coordinate are much smaller than those of the corresponding hybrid σ-coordinate. The RMSEs reduction of the advection errors by the OS-coordinate is over 25% more.
2. The OS-coordinate can preserve the shape of the tracer much better than the hybrid σ-coordinate at the end of the advection.

LASC

THANKS

LASE

THANKS
B. 4 Result of angles between every two coordinate surface

$\alpha\left(x^{\prime} \&\right.$ sigma $)$

$\beta\left(y^{\prime} \&\right.$ sigma $)$

$\gamma\left(\mathbf{x}^{\prime} \& y^{\prime}\right)$

The orthogonality of the points on the coordinate surfaces of the OScoordinate at a constant height.

Range of angle in different colors:

Red: 80-100 ${ }^{\circ}$
Green: $60-70^{\circ}$ or $110-120^{\circ}$
Blue: 70-80 ${ }^{\circ}$ or $100-110{ }^{\circ}$
White: other angels

C. 4 Absolute errors in the Schär-type experiments

Max $=\mathbf{0 . 0 0 8 3 9 0 9 3}$

Absolute errors with the non-terrain simulation at $\boldsymbol{t}=\mathbf{2 0 0}$

The solid black contours are for positive values, and the dashed contours are for negative values. The contour interval is 0.2 .

Conclusion:
1.The absolute errors in OS-coordinate are much smaller than those in the hybrid σ-coordinate.
2.The maximum absolute error in OsBr2 is two orders of magnitude less than those in OsBr1

3D Solution

- Obtain PDEs: Seek the rotation angle of the vectors in the tangent plane
- Obtain LAEs: Change the difference methods
- Numerical Solutions: Change the numerical methods(generalized least square and conjugated gradient method)

Orthogonal Grid

- Investigation
- Analysis of mechanism

A- Background

A. 2 The development of vertical coordinate

Z coordinate-Richardson(1922)
P coordinate-Sutcliffe and Godart(1947)
© coordinate-Shapiro et al.(1973)
intuitive in the real space
continuous equation \rightarrow diagnostic equation eliminate the computational errors of vertical advection

Coordinate plane intersects with the terrain \rightarrow initialize the grid above the terrain \rightarrow calculation errors

Terrain-following σ coordinate
Low boundary \rightarrow coordinate surface

- Phillips(1957);Gal-Chen and Sommerville(1975)

Computational errors of pressure gradient force and advection

Rotation of OS-coordinate

3-D schematic rotation for solving the basis of the OS-coordinate on the upslope of the terrain.

The burgundy arrow is the normal vector of the terrain, and the burgundy dashdotted line is its projection on the plane Oxz. The black arrows are the basis vectors of the z coordinate, the blue arrows are the basis vectors of the first rotated coordinate [$0 ; \mathrm{x} 1, \mathrm{y} 1, \mathrm{z1}$], and the green arrows are the basis vectors of the second rotated coordinate [0;x2,y2,z2].

Cross-Point Method

Calculate intersection points from the top of the model through x ' coordinate line

Expressions of basis of OS-coordinate:

The first kind	$\left\{\begin{array}{l}\overrightarrow{\mathbf{i}}_{o}=\cos \theta^{\prime} \overrightarrow{\mathbf{i}}+\sin \theta^{\prime} \overrightarrow{\mathbf{k}} \\ \overrightarrow{\mathbf{j}}_{o}=-\sin \theta^{\prime} \sin \lambda^{\prime} \overrightarrow{\mathbf{i}}+\cos \lambda^{\prime} \overrightarrow{\mathbf{j}}+\cos \theta^{\prime} \sin \lambda^{\prime} \overrightarrow{\mathbf{k}} \\ \overrightarrow{\mathbf{k}}_{o}=-\sin \theta^{\prime} \cos \lambda^{\prime} \overrightarrow{\mathbf{i}}-\sin \lambda^{\prime} \overrightarrow{\mathbf{j}}+\cos \theta^{\prime} \cos \lambda^{\prime} \overrightarrow{\mathbf{k}}\end{array}\right.$
The second kind	$\left\{\begin{array}{l}\overrightarrow{\mathbf{i}}_{o}=\cos \lambda \overrightarrow{\mathbf{i}}-\sin \theta \sin \lambda \overrightarrow{\mathbf{j}}-\cos \theta \sin \lambda \overrightarrow{\mathbf{k}} \\ \overrightarrow{\mathbf{j}}_{o}=\cos \theta \overrightarrow{\mathbf{j}}-\sin \theta \overrightarrow{\mathbf{k}} \\ \overrightarrow{\mathbf{k}}_{o}=\sin \lambda \overrightarrow{\mathbf{i}}+\sin \theta \cos \lambda \overrightarrow{\mathbf{j}}+\cos \theta \cos \lambda \overrightarrow{\mathbf{k}}\end{array}\right.$

where $\quad \cos \theta=\frac{1}{\sqrt{1+H_{y}^{2}}}, \cos \theta^{\prime}=\frac{1}{\sqrt{1+H_{x}^{2}}}, \cos \lambda=\frac{\sqrt{1+H_{y}^{2}}}{\sqrt{1+H_{x}^{2}+H_{y}^{2}}}, \cos \lambda^{\prime}=\frac{\sqrt{1+H_{x}^{2}}}{\sqrt{1+H_{x}^{2}+H_{y}^{2}}}$

Schär-type experiments (2002)

The new smooth level vertical (SLEVE) coordinate yields smooth coordinates at mid- and upper levels.

$$
\begin{gathered}
z(\sigma)=\sigma+h_{1}(x, y) b_{1}(\sigma)+h_{2}(x, y) b_{2}(\sigma) \\
b_{i}(\sigma)=\frac{\operatorname{sh} \frac{H-\sigma}{s_{i}}}{\operatorname{sh} \frac{H}{s_{i}}}
\end{gathered}
$$

The basic concept of the new coordinate is to employ a scale-dependent vertical decay s of underlying terrain features.

Schär-type experiments (2002)

Vertical cross section of the idealized two-dimensional advection test.

The topography is located entirely within a stagnant pool of air, while there is a uniform horizontal velocity aloft. The analytical solution of the advected anomaly is shown at three instances.

Schär-type experiments (2002)

Numerical solutions to the advection test using centered differences and a horizontal Courant number of $\mathbf{0 . 2 5}$.
(a),(c),(e),(g) The advected anomalies at three consecutive times ($\mathrm{t} 1=0, \mathrm{t} 2=2500 \mathrm{~s}, \mathrm{t} 3=5000 \mathrm{~s}$).

The initial amplitude of the anomaly is 1 ; the contour interval in the left-hand panels is 0.1 , and that in the righthand panels is 0.01 (zero contour suppressed, negative contours dashed).

Parameters:

OS-coordinate VS the associated hybrid σ coordinate

Wave-like terrain

To investigate the distinct impact of the orthogonal grid of the OScoordinate

Experiment parameters	Expressions
wave-like terrain	$h^{*}(x)=\left\{\begin{array}{l}h_{0} \cos ^{2}\left(\frac{\pi x}{2 a}\right) \\ 0 \quad \text { for }\|x\| \leq a \\ \text { for }\|x\| \geq a\end{array}\right.$
	$h(x)=\cos ^{2}\left(\frac{\pi x}{\lambda}\right) h^{*}(x)$
Experiment parameters	$\boldsymbol{b}=\left(\frac{H_{t}-z}{H_{t}-h}\right)^{n}$
definition of hybrid σ coordinate	$\sigma=z-\left(\frac{H_{t}-z}{H_{t}-h}\right)^{n} \cdot h$

Advection of Both Coordinates at Three Times in Low-Level Experiments

The advection at the beginning ($t=0$), the middle ($t=200$), and the end ($t=400$) of the advection in the modified Schär-type (low-level) experiments.

Colored contours are the tracer q, with the contour interval of 0.1.

Conclusion:

The slower the decay speed of rotation parameter is, the more apparent the deformation is.
When the advection is over the top of the terrain, there is large deformation with different kind in both CsHybrid1 and OsBr1. At the end of the advection, the shape of the tracer in CsHybrid1 still has a large deformation; however, the shape of the tracer in OsBr 1 is almost recovered.

Absolute Errors of Both Coordinates in Low-Level Experiments

$t=200 \mathrm{~s}$
Absolute errors of the hybrid σ-coordinate and the OScoordinate compared with the non-terrain simulation.

Shading represents the AE. The solid black contours are for positive values, and the dashed contours are for negative values. The contour interval is 0.2 .

The absolute errors in OS-coordinate are much smaller than those in the hybrid σ-coordinate.

RMSEs of All the Five Coordinates in the Low-Level Experiments

RMSEs of all five experiments with respect to the non-terrain simulation in the modified Schärtype (low-level) experiments at every time step.

Conclusion:

The RMSEs reduction of the advection errors by the OS-coordinate is about 50\% more compared with the corresponding hybrid σ-coordinate.

RMSEs reduction by the OS-

RMSE reduction by the OS-coordinate in the Schär-type (high-level) experiments	Experiments	RMSEs		coordinate Unit: \%	
		average	maximum	average	maximum
	CsHybrid1	0.015	0.035	26.9	30.5
	OsBr1	0.011	0.024		
	CsHybrid2	0.000068	0.00023	25.5	30.4
	OsBr2	0.000051	0.00016		

RMSEs reduction by the OS-
RMSE reduction by the OS-coordinate Experiments
coordinate in the modified Schär (low-level) experiments

Unit: \%

	average	maximum	average	maximum
CsHybrid1	0.029	0.048		
OsBr1	0.0120	0.025	47.5	47.2
CsHybrid2	0.0029	0.0072		
OsBr2	0.0011	0.0032	63.5	55.7

