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NUMA!
Non-hydrostatic Unified Model of the Atmosphere

• dynamical core inside the 
Navy’s next generation weather 
prediction system NEPTUNE!

• unified across numerics 
(contains Continuous and 
Discontinuous Galerkin 
methods)!

• unified across applications 
(regional and global modeling)!

• 3D, DG, MPI: strong scaling 
for explicit time integration 
(tested up to 32000 CPUs)!

• 2D, serial: allows dynamic AMR
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applications!
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• Hurricane simulations!
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• dynamic AMR, 

uniform meshes!
• high order, low order
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applications!
• cloud simulations!
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methods!
• dynamic AMR, 

uniform meshes!
• high order, low order

For which of these applications 
should we use these methods and 
how should we use them?

Goal
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L2-error of uniform simulations 
as a function of number of floating point operations
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AMR reduces the L2-error by a 
factor of 2 for same amount of 
work.
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Three different initial profiles for θ’ 
as a function of distance from the center of the bubble r
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Reference result for modified bubbles!
resolution ∆x = 40cm, time t=700s

s=2 s=4 s=6
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AMR uniform

s=2 s=4 s=6

L2-error for 3 different initial conditions 
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Next steps: 1. different refinement criteria (gradient, ...), 2. include 
moisture, 3. run comparison in 3D

Questions:!
1. L2-error: how much 

accuracy do we gain by 
using dynamic AMR?!

!

2. How does the benefit of 
AMR depend on the 
initial condition?!

!

3. What is the benefit for 
the error of max(θ )?

Results:!
AMR reduces the L2-error by a 
factor of 2 for same amount of 
work.!
!

For the three different initial 
conditions that we tested we get 
very similar benefit of AMR.

Questions for Today 
Warm air bubble test case with µ = 0.1m2/s at t = 700s

AMR reduces the error of 
max(θ ) by a factor around 30 
for the same amount of work.

motivation results next steps



Squall line simulation with NUMA!
isosurface of cloud water content qc=0.0035 at t=7500s
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Squall line simulation with NUMA

motivation results next steps

visualization with Maya® (see http://anmr.de for instructions)

http://anmr.de


Thank you for your attention!


