# Geometric cell alignment on geodesic grids

### Pedro S. Peixoto Saulo R. M. Barros

Applied Mathematics Department University of São Paulo Brazil

### PDEs 2014 Talk

CAPES Funding is acknowledged

| Geometric Alignment | Theory |
|---------------------|--------|
| 000000000           |        |

Summary









Application on Vector Reconstructions

Conclusions 000

### Motivation

## **Icosahedral Grid**

### Icosahedral grid (Voronoi grid)



Application on Vector Reconstructions

Conclusions 000

#### Motivation

## Finite-Volume Discretization



Theoretical results

# **Divergence Operator Discretization**

Assuming the vector field given at the midpoints of the edges of the polygon, or precisely calculated:

$$\operatorname{div}(\vec{v})(P_0) \approx \frac{1}{|\Omega|} \int_{\Omega} \operatorname{div}(\vec{v}) \, d\Omega = \frac{1}{|\Omega|} \int_{\partial \Omega} \vec{v} \cdot \vec{n} \, d\partial\Omega \approx \frac{1}{|\Omega|} \sum_{i=1}^{n} \vec{v}(Q_i) \cdot \vec{n}_i \, I_i.$$

On a plane:

- Average approximation: 2nd order if P<sub>0</sub> is the centroid
- Divergence approximation: 1st order only in general
- Rectangle: 2nd order
- Odd number of edges (triangle, pentagon): 1st order only, even if regular.
- General quadrilaterals and hexagons?

Theoretical results

# Geometric Alignment

### Definition (Planar aligned polygon)

A polygon on a plane with an even number of vertices, given by  $\{P_i\}_{i=1}^n$ , is aligned if for each edge  $e_i = \overline{P_i P_{i+1}}$  the corresponding opposite edge  $e_{i+n/2} = \overline{P_{i+n/2} P_{i+n/2+1}}$  is parallel and has the same length as  $e_i$ .

### Definition (Spherical aligned polygon)

A spherical polygon with an even number of edges is aligned if its radial projection onto the plane tangent to the sphere at its centroid is a planar aligned polygon.

OBS: Geodesics are straight lines in the projected plane

| Geometric Alignment Theory | Application on Vector Reconstructions | Conclusions<br>000 |
|----------------------------|---------------------------------------|--------------------|
| Theoretical results        |                                       |                    |
| Alignment Index            |                                       |                    |

### Proposition (Alignment Index)

A polygonal cell  $\Omega$  is aligned if, and only if, the nondimensional  $\Xi(\Omega)$  is zero

$$\Xi(\Omega) = \frac{1}{n\bar{d}} \sum_{i=1}^{n/2} |d_{i+1+n/2,i} - d_{i+n/2,i+1}| + |d_{i+1,i} - d_{i+n/2+1,i+n/2}|$$

• 
$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i,i+1}$$

- $d_{i,j}$  is distance metric between polygon vertices  $P_i$  and  $P_j$ , i, j = 1, ..., n
- The greater Ξ, the greater miss-alignment



Theoretical results

# Main result on the sphere

### Theorem

Let  $\vec{v}$  be a  $C^4$  vector field on the sphere and  $\Omega$  an aligned spherical polygon with n geodesic edges, diameter d and area  $|\Omega|$  satisfying  $\alpha d^2 \leq |\Omega| \leq d^2$ , for some positive constant  $\alpha$ . Then there is a constant *C*, which independs on the diameter *d*, such that

$$\left| \operatorname{\textit{div}}(ec{v})(P_0) - rac{1}{|\Omega|} \sum_{i=1}^n ec{v}(Q_i) \cdot ec{n}_i \, I_i 
ight| \leq C d^2,$$

where  $P_0$  is the mass centroid of  $\Omega$ .



See Peixoto and Barros (2013)

Numerical Results

## Alignment Index

Application on Vector Reconstructions

Conclusions 000



Glevel 6 - 40962 nodes

# Grid imprinting

| For $\Xi < 1/100$ : |               |  |
|---------------------|---------------|--|
| glevel              | % Align Cells |  |
| 4                   | 30.99%        |  |
| 5                   | 49.22%        |  |
| 6                   | 70.12%        |  |
| 7                   | 84.24%        |  |
| 8                   | 91.85%        |  |

- Differences in cell geometry results in differences in the convergence orders of the discretization
- Aligned cells have faster convergence than non-aligned cells
- Badly aligned cells will have larger errors, and if these are related to the grid structure, we will have grid imprinting
- Analogous theorems for Rotational (curl) and Laplacian operator
- Theory constructed generally for any geodesic grid

Geometric Alignment Theory ○○○○○○○● Application on Vector Reconstructions

Conclusions 000

Numerical Results

# Locally refined SCVT grids











Application on Vector Reconstructions

Conclusions 000

Vector Reconstructions

## Vector reconstruction



Analysed Methods:

- Perot's method
- Klausen et al method (RT0 generalized to polygons)
- Polynomial (Least Sqrs.)

- RBF

\* Hybrid (Perot and Linear LSQ)

See Peixoto and Barros (2014) - under review - JCP Preprint

Application on Vector Reconstructions

Conclusions 000

Vector Reconstructions

## Perot's Method

$$\vec{u}_0 = \frac{1}{|\Omega|} \sum_{i=1}^n \vec{r}_i \, u_i \, I_i,$$

- Divergence Theorem based
- Low cost
- Exact for constant fields
- 1st order only in general
- 2nd order on aligned cells



Application on Vector Reconstructions

Conclusions 000

Vector Reconstructions

# Hybrid scheme



Vector recon. to Voronoi cell nodes Rossby-Haurwitz wave 8 - Icosahedral grid level 7 HYBRID: 84% Perot's method and 16% Linear LSQ method Vector Reconstructions



Perot's method on well aligned cells (majority) and linear LSQ method on ill aligned cells (minority)

- 2nd order accurate
- Low cost on fine grids (cost dominated by Perot's method)
- No pre-computing needed (less memory usage compared to RBF and LSQ)
- Applicable to any geodesic grid (tested in locally refined SCVT)

### Application

2nd order semi-Lagrangian transport model for staggered Voronoi grids





2 Application on Vector Reconstructions



### Conclusions

## Conclusions

- Geometrical alignment:
  - Better understanding of grid imprinting
- General Mathematical proofs:
   Plane and sphere for arbitrary polygons
- Alignment index:

Tool for development of numerical methods Tool for grid development

 Analysis maybe be extended to other operators and dicretizations

Where are we going with this?

Application on Vector Reconstructions

Conclusions

### Conclusions

### Analysis of shallow water model

Thuburn et al (2009) tangent vector reconstruction



Error of Rossby-Haurwitz wave 8 - Icos glevel 6

### Conclusions



- Peixoto, PS and Barros, SRM. 2013. Analysis of grid imprinting on geodesic spherical icosahedral grids, J. Comput. Phys. 237 (March 2013), 61-78.
- Peixoto, PS and Barros, SRM. 2014. On vector field reconstructions for semi-Lagrangian transport methods on geodesic staggered grids, J. Comput. Phys. (under review)

Preprints available at www.ime.usp.br/~pedrosp

Thank you very much!