Optimization-Based Tracer Transport on the Sphere

Kara Peterson, Pavel Bochev, and Denis Ridzal

Sandia National Laboratories

PDEs on a Sphere Workshop

April 7, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Transport Problem

A tracer, represented by its mixing ratio q and mass ρq, is transported in the flow with velocity \mathbf{u}

$$
\left.\begin{array}{l}
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{u}=0 \\
\frac{\partial \rho q}{\partial t}+\nabla \cdot \rho q \mathbf{u}=0
\end{array}\right\} \rightarrow \frac{D q}{D t}=0
$$

Solution methods should satisfy

- local conservation of ρq
- monotonicity or bounds preservation of q
- consistency between q and ρ (free stream preserving)
- preservation of linear correlations between tracers $\left(q_{1}=a q_{2}+b\right)$

Incremental Remap for Transport

Given a partition $C(\Omega)$ into cells $c_{i}, i=1, \ldots C$

- cell mass $m_{i}=\int_{c_{i}} \rho(\mathrm{x}, t) d V$
- cell area $\mu_{i}=\int_{c_{i}} d V$
- cell average density $\rho_{i}=\frac{m_{i}}{\mu_{i}}$

- cell average tracer concentration

$$
\begin{aligned}
& q_{i}=\frac{\int_{c_{i}} \rho(\mathbf{x}, t) q(\mathbf{x}, t) d V}{\int_{c_{i}} \rho(\mathbf{x}, t) d V} \\
& \int_{c_{i}} \rho(\mathbf{x}, t) q(\mathbf{x}, t) d V=m_{i} q_{i}
\end{aligned}
$$

For a Lagrangian volume, V_{L}

$$
\begin{gathered}
\frac{d}{d t} \int_{V_{L}} \rho(\mathbf{x}, t) d V=0 \\
\frac{d}{d t} \int_{V_{L}} q(\mathbf{x}, t) \rho(\mathbf{x}, t) d V=0
\end{gathered}
$$

Incremental Remap for Transport

(1) Project arrival grid to departure grid: $C(\Omega(t+\Delta t)) \mapsto \widetilde{C}(\Omega(t))$
(2) Remap: $\rho(t) \mapsto \tilde{\rho}(t), q(t) \mapsto \widetilde{q}(t)$
(3) Lagrangian update:

$$
m_{i}(t+\Delta t)=\tilde{m}_{i}(t), \quad \rho_{i}(t+\Delta t)=\frac{m_{i}(t+\Delta t)}{\mu_{i}(t+\Delta t)}, \quad q_{i}(t+\Delta t)=\tilde{q}_{i}(t)
$$

Dukowicz and Baumgardner (2000) JCP

Density and Tracer Remap

Given mean density and tracer values ρ_{i}, q_{i} on the old grid cells c_{i}, find accurate approximations for \widetilde{m}_{i} and \widetilde{q}_{i} on the new cells \widetilde{c}_{i} such that:

- Total mass and tracer are conserved:

$$
\sum_{i=1}^{C} \widetilde{m}_{i}=\sum_{i=1}^{C} m_{i}=M \quad \sum_{i=1}^{C} \widetilde{m}_{i} \widetilde{q}_{i}=\sum_{i=1}^{C} m_{i} q_{i}=Q .
$$

- Mean density and tracer approximations on the new cells, $\widetilde{\rho}_{i}=\frac{\widetilde{m}_{i}}{\tilde{\mu}_{i}}$ and q_{i} satisfy the local bounds

$$
\begin{aligned}
\rho_{i}^{\min } \leq \widetilde{\rho}_{i} \leq \rho_{i}^{\max }, \quad i=1, \ldots, C, \\
q_{i}^{\min } \leq \widetilde{q}_{i} \leq q_{i}^{\max }, \quad i=1, \ldots, C,
\end{aligned}
$$

Optimization-Based Remap

Objective

$\left\|\widetilde{u}-u^{T}\right\|$
minimize the distance between the solution and a suitable target

Target

$$
\partial_{t} u^{\top}=L^{h} u^{\top}
$$

stable and accurate solution, not required to possess all desired physical properties

Constraints

$$
\underline{C} \leq C \widetilde{u} \leq \bar{C}
$$

desired physical properties viewed as constraints on the state

Advantages

- Solution is globally optimal with respect to the target and desired physical properties
- Decouples accuracy from enforcement of physical properties

Density Formulation

$$
\begin{array}{rlccc}
\tilde{m}_{i} & = & \int_{c_{i}} \rho(\boldsymbol{x}) d V & + & \left(\int_{\widetilde{c}_{i}} \rho(\boldsymbol{x}) d V-\int_{c_{i}} \rho(\boldsymbol{x}) d V\right) \\
& = & m_{i} & + & u_{i}
\end{array}
$$

- Objective $\frac{1}{2}\left\|\widetilde{u}-u^{\top}\right\|_{\ell_{2}}^{2}$
- Target $u_{i}^{\top}:=\int_{\widetilde{c}_{i}} \rho^{h}(\boldsymbol{x}) d V-\int_{c_{i}} \rho^{h}(\boldsymbol{x}) d V$
- Constraints $\sum_{i=1}^{C} \widetilde{u}_{i}=0, \quad \rho_{i}^{\min } \leq \widetilde{\rho}_{i} \leq \rho_{i}^{\max }$

Bochev, Ridzal, Shashkov (2013) JCP

Tracer Formulation

$$
\widetilde{q}_{i}=\frac{\int_{\widetilde{c}_{i}} \rho(\boldsymbol{x}) q(\boldsymbol{x}) d V}{\int_{\widetilde{c}_{i}} \rho(\boldsymbol{x}) d V}
$$

- Objective $\frac{1}{2}\left\|\widetilde{q}-q^{\top}\right\|_{\ell_{2}}^{2}$
- Target $q_{i}^{\top}:=\frac{\int_{\widetilde{c}_{i}} \rho^{h}(\boldsymbol{x}) q^{h}(\boldsymbol{x}) d V}{\int_{\widetilde{c}_{i}} \rho^{h}(\boldsymbol{x}) d V}$
- Constraints $\sum_{i=1}^{C} \widetilde{m}_{i} \widetilde{q}_{i}=Q, \quad q_{i}^{\min } \leq \widetilde{q}_{i} \leq q_{i}^{\max }$

OBR Algorithm

$$
\left\{\begin{array}{l}
\text { minimize } \quad \frac{1}{2}\left\|\widetilde{u}-u^{\top}\right\|_{\ell_{2}}^{2} \quad \text { subject to } \\
\sum_{i=1}^{C} \widetilde{u}_{i}=0, \quad m_{i}^{\min } \leq m+\widetilde{u} \leq m_{i}^{\max }
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { minimize } \quad \frac{1}{2}\left\|\widetilde{q}-q^{\top}\right\|_{\ell_{2}}^{2} \quad \text { subject to } \\
\sum_{i=1}^{C} \widetilde{q}_{i}=Q, \quad q_{i}^{\min } \leq \widetilde{q} \leq q_{i}^{\max }
\end{array}\right.
$$

Singly linearly constrained quadratic programs with simple bounds

- Solve related separable problem (without mass constraint) first, cost $O(C)$
- Satisfy the mass conservation constraint in a few secant iterations

Density and Tracer Reconstructions

$$
\begin{aligned}
\left.\rho^{h}(\mathbf{x})\right|_{c_{i}} & =\rho_{i}+\mathbf{g}_{i}^{\rho} \cdot\left(\mathbf{x}-\mathbf{b}_{i}\right) \\
\left.q^{h}(\mathbf{x})\right|_{c_{i}} & =q_{i}+\mathbf{g}_{i}^{q} \cdot\left(\mathbf{x}-\mathbf{c}_{i}\right)
\end{aligned}
$$

- Approximate gradients ($\mathbf{g}_{i}^{\rho} \approx \nabla \rho, \mathbf{g}_{i}^{q} \approx \nabla q$) computed using least-squares fit with five point stencil
- Cell barycenter $\quad \mathbf{b}_{i}=\frac{\int_{c_{i}} \mathbf{x} d V}{\mu_{i}}$
- Cell center of mass $\quad \mathbf{c}_{i}=\frac{\int_{c_{i}} \mathbf{x} \rho_{i}(\mathbf{x}) d V}{m_{i}}$
- Mean preserving by construction

$$
\frac{1}{\mu_{i}} \int_{c_{i}} \rho^{h}(\mathrm{x}) d V=\rho_{i} \quad \frac{1}{m_{i}} \int_{c_{i}} \rho^{h}(\mathrm{x}) q^{h}(\mathrm{x}) d V=q_{i}
$$

Dukowicz and Baumgardner (2000) JCP

Swept Area Approximation

$$
\begin{gathered}
F_{i s}^{\rho}=\int_{\sigma_{i s}} \rho_{i / s}^{h}(x) d V \\
F_{i s}^{q}=\int_{\sigma_{i s}} \rho_{i / s}^{h}(x) q_{i / s}^{h}(x) d V
\end{gathered}
$$

$$
u_{i}^{\top} \approx \sum_{s} F_{i s}^{\rho}
$$

$$
q_{i}^{\top} \approx \frac{q_{i}(t) m_{i}(t)+\sum_{s} F_{i s}^{q}}{m_{i}(t)+u_{i}^{\top}}
$$

Cubed Sphere Grid

- Six faces of cube projected onto surface of sphere
- Equiangular gnomonic projection with central angles, $\alpha, \beta \in[-\pi / 4, \pi / 4]$
- Local coordinates

$$
x=a \tan \alpha, y=a \tan \beta \quad p=1, \ldots, 6
$$

$$
\begin{gathered}
\int_{V} d V=-\int_{\partial V} \frac{1}{1+x^{2}} \frac{y}{r} d x \\
\int_{V} x d V=-\int_{\partial V} \frac{1}{1+x^{2}} \frac{x y}{r} d x \\
\int_{V} y d V=\int_{\partial V} \frac{1}{r} d x \\
r=\sqrt{1+x^{2}+y^{2}} \text { for } a=1
\end{gathered}
$$

See Ullrich et al. (2009) Monthly Weather Review, Lauritzen et al.(2010) JCP.

Computational Examples

- Test cases from Lauritzen et al. (2012) Geosci. Model Dev.
- Initial density distribution set to one everywhere
- Three types of tracer distributions
- Smooth Gaussian hills
- Cosine bells
- Notched cylinders
- Initial tracer distributions centered at

$$
\left(\lambda_{1}, \theta_{1}\right)=(5 \pi / 6,0) \text { and }\left(\lambda_{2}, \theta_{2}\right)=(7 \pi / 6,0)
$$

- Nondivergent deformational flow field, $T=5$:

$$
\begin{aligned}
& u(\lambda, \theta, t)=2 \sin ^{2}(\lambda-2 \pi t / T) \sin (2 \theta) \cos (\pi t / T)+2 \pi \cos (\theta) / T \\
& v(\lambda, \theta, t)=2 \sin (2(\lambda-2 \pi t / T)) \cos (\theta) \cos (\pi t / T)
\end{aligned}
$$

Convergence Test

	$t=0$			$t=2.5$	
mesh	steps	$\begin{aligned} & \text { OBT }^{*} \\ & l_{2} \\ & \hline \end{aligned}$	l_{∞}	Unlimited l_{2}	l_{∞}
3°	600	0.386	0.465	0.368	0.425
$1.5{ }^{\circ}$	1200	0.182	0.268	0.172	0.225
$0.75{ }^{\circ}$	2400	0.0626	0.113	0.0559	0.0843
0.375°	4800	0.0167	0.0425	0.0144	0.0233
	Rate	1.51	1.16	1.56	1.40

[^0]
Linear Tracer Correlation Test

Two tracers with initial distributions linearly correlated cosine bells, q_{1} has $\min =0.1$ and $\max =1.0, q_{2}=-0.8 q_{1}+0.9$.

Nonlinear Tracer Correlation Test

Two tracers with initial distributions nonlinearly correlated cosine bells, q_{1} has $\min =0.1$ and $\max =1.0, q_{2}=-0.8\left(q_{1}\right)^{2}+0.9$ with $\min =0.1$ and $\max =0.892$.

Correlation $t=2.5$

0.1/0.878

Nonlinear Tracer Correlation Test

1.5°
OBT

Unlimited

Filament Preservation Test

$$
l_{f}(\tau, t)=100.0 \times \frac{A(\tau, t)}{A(\tau, 0)}
$$

where $A(\tau, t)$ is the total area for which $q \geq \tau$.

Filament Preservation Test

$$
l_{f}(\tau, t)=100.0 \times \frac{A(\tau, t)}{A(\tau, 0)}
$$

where $A(\tau, t)$ is the total area for which $q \geq \tau$.

$t=2.5$

Discontinuous Tracer Test

$\min =0.1$
$\max =1.0$

$\min =0.10$
$\max =1.00$

Slope Limited

$\min =0.078$
$\max =1.030$

Unlimited

$\min =-0.020$
$\max =1.14$

Conclusions

- Optimization-based transport offers a robust and flexible alternative to standard transport techniques
- Solution is mass conserving, bounds preserving, and free stream preserving.
- Optimization algorithm is efficient and computationally competitive with standard slope limiting in these examples.

More details in:

Bochev, Ridzal, Scovazzi, Shashkov (2011) "Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary lagrangian-eulerian methods", JCP
Bochev, Ridzal, Shashkov (2013) "Fast optimization-based conservative remap of scalar fields through aggregate mass transfer", JCP

Bochev, Ridzal, Peterson (2014) "Optimization-based remap and transport: a divide and conquer strategy for feature-preserving discretizations", JCP
Peterson, Bochev, Ridzal (2014) "Optimization-based transport on the cubed sphere grid", Proceedings of LSSC13.

[^0]: * Optimization-based transport

