A Massively-Parallel Framework for Finite-Volume Simulation of Global Atmospheric Dynamics

Willem Deconinck ¹ Mats Hamrud ¹ Piotr K. Smolarkiewicz ¹ Joanna Szmelter ² Zhao Zhang ²

> ¹European Centre for Medium-Range Weather Forecasts, Reading, UK ²Wolfson School, Loughborough University, UK

2014 PDEs Workshop

Beyond exascale (~2030, at T7999): gridpoint method with local communication

Beyond exascale (~2030, at T7999): gridpoint method with local communication

MPDATA

- horizontally unstructured
- vertically structured
- Ion-lat domain
- 2^{nd} order in time and space

Beyond exascale (~2030, at T7999): gridpoint method with local communication

PDEs 2014 — Deconinck et al

Slide 1/2

Development of flexible dynamic data structure

- Object Oriented C++ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Development of flexible dynamic data structure

- Object Oriented C++ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Orographic zonal flow, meridional velocity

Development of flexible dynamic data structure

- Object Oriented C++ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Orographic zonal flow, meridional velocity

A Massively-Parallel Framework for Finite-Volume Simulation of Global Atmospheric Dynamics

Willem Deconinck¹ Mats Hamrud¹ Piotr K. Smolarkiewicz¹ Joanna Szmelter² Zhao Zhang²

¹European Centre for Medium-Range Weather Forecasts, Reading, UK ²Wolfson School, Loughborough University, UK

Scalability of Current IFS Dynamical Core

5km horizontal resolution with 137 levels

Flexible Dynamic Framework

- Complex requirements for unstructured meshes
- Handling of distributed memory parallelisation
- Mesh specific routines: construction of dual mesh, periodicity, reading/writing fields, interpolation
- Multiple meshes to handle multigrid implementations
- ► Object Oriented Design using C++:
 - Hierarchical nesting of topological objects
 - ► Meshes, Field Sets, Fields
 - Multiple Halo-Exchange patterns
- ► Fortran Interface allows direct access to internal data

50000 100000 150000 200000 250000 # core

We will reach Exa-scale in \sim 2030

Spectral Transform Method does not scale to Exa-scale because of global communications

500

450

400

л Да 350

Days 00£

ଅ 250

200

150

100

Semi-Lagrangian time-stepping implementation is non-conservative

Alternative Dynamical Core: Unstructured Edge-based Finite Volume MPDATA

- Non-oscillatory forward-in-time scheme, capable of accomodating a wide range of scales and conservation problems
- Unstructured prismatic meshes allow irregular spatial resolution and enhancement of polar regions.
- Formulation for time-dependent non-orthogonal curvilinear coordinates on the manifold.

$$\frac{\partial G\psi}{\partial t} + \nabla \cdot (G\mathbf{v}^*\psi) = GR$$

See Szmelter and Smolarkiewicz (2010, JCP), for further discussion.

Shallow Water Equations on the Sphere

$$\begin{aligned} \frac{\partial G\mathcal{D}}{\partial t} + \nabla \cdot (G\mathbf{v}^*\mathcal{D}) &= 0\\ \frac{\partial G\mathcal{Q}_x}{\partial t} + \nabla \cdot (G\mathbf{v}^*\mathcal{Q}_x) &= G\left(-\frac{g}{h_x}\mathcal{D}\frac{\partial H}{\partial x} + f\mathcal{Q}_y - \frac{1}{G\mathcal{D}}\frac{\partial h_x}{\partial y}\mathcal{Q}_x\mathcal{Q}_y\right)\\ \frac{\partial G\mathcal{Q}_y}{\partial t} + \nabla \cdot (G\mathbf{v}^*\mathcal{Q}_y) &= G\left(-\frac{g}{h_x}\mathcal{D}\frac{\partial H}{\partial x} + f\mathcal{Q}_y - \frac{1}{G\mathcal{D}}\frac{\partial h_x}{\partial y}\mathcal{Q}_x\mathcal{Q}_y\right)\end{aligned}$$

Meridional wind-component for flow over 2km mountain at mid-latitudes; result obtained using Reduced Gaussian mesh with 16km resolution.

3D Hydrostatic Equations in Isentropic Coordinates

Massively Parallel Implementation

Multiple levels of parallelism

Optimal Equal-Area Domain decomposition

- Small halo needs to be exchanged with surrounding subdomains for Distributed Memory algorithms
- Shared Memory parallelisation avoids further subdivision of subdomains

 $+\Pi$

Structured treatment of vertical direction discounts cost of horizontal indirect addressing

Froude Number = 2, Zontal wind U = 10 m/s, Brunt-Väisälä frequency = 0.04

Isentropes in a vertical plane at the equator

Isentrope height perturbation at $H_e = \lambda_z/8$

Result obtained using Reduced Gaussian mesh with 1km horizontal resolution, and 40m vertical resolution on a small planet with radius 64km.

Parallel Scaling results

Evolutionary Introduction into IFS

Construction of unstructured mesh using same data points as used by IFS' Spectral Transform Method Integration with ECMWF's infrastructure for archiving, post-processing, visualisation

Acknowledgements

willem.deconinck@ecmwf.int