A Massively-Parallel Framework for Finite-Volume Simulation of Global Atmospheric Dynamics

Willem Deconinck ${ }^{1} \quad$ Mats Hamrud ${ }^{1}$ Piotr K. Smolarkiewicz ${ }^{1}$ Joanna Szmelter ${ }^{2}$ Zhao Zhang ${ }^{2}$

${ }^{1}$ European Centre for Medium-Range Weather Forecasts, Reading, UK ${ }^{2}$ Wolfson School, Loughborough University, UK

$$
\Rightarrow 5 C M M=
$$

2014 PDEs Workshop

T3999 ~5km global resolution spectral transform model IFS operational in ~ 2024 scales well into petascale

T3999 ~5km global resolution spectral transform model IFS operational in ~ 2024 scales well into petascale

Beyond exascale (~ 2030, at T7999): gridpoint method with local communication

T3999 ~5km global resolution spectral transform model IFS operational in ~ 2024 scales well into petascale

Beyond exascale (~ 2030, at T7999): gridpoint method with local communication

MPDATA

- horizontally unstructured
- vertically structured
- lon-lat domain
- $2^{\text {nd }}$ order in time and space

T3999 ~5km global resolution spectral transform model IFS operational in ~ 2024 scales well into petascale

Beyond exascale (~ 2030, at T7999): gridpoint method with local communication

MPDATA

- horizontally unstructured
- vertically structured
- lon-lat domain
- $2^{\text {nd }}$ order in time and space

Evolutionary introduction into IFS

Developments and Results

Developments and Results

Development of flexible dynamic data structure

- Object Oriented C++ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Developments and Results

Development of flexible dynamic data structure

- Object Oriented $\mathrm{C}++$ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Orographic zonal flow, meridional velocity

Developments and Results

Development of flexible dynamic data structure

- Object Oriented $\mathrm{C}++$ design with Fortran interface
- MPI / Halo-exchanges
- interpolation, mesh-generation, product delivery

Orographic zonal flow, meridional velocity

T2047 ($\sim 10 \mathrm{~km}$) with 137 isentrope levels - scaling to 40000 cores

A Massively-Parallel Framework for Finite-Volume Simulation of Global Atmospheric Dynamics

Willem Deconinck ${ }^{1}$ Mats Hamrud ${ }^{1}$ Piotr K. Smolarkiewicz ${ }^{1}$ Joanna Szmelter ${ }^{2}$ Zhao Zhang ${ }^{2}$ ${ }^{1}$ European Centre for Medium-Range Weather Forecasts, Reading, UK

${ }^{2}$ Wolfson School, Loughborough University, UK

- We will reach Exa-scale in ~2030
- Spectral Transform Method does not scale to Exa-scale because of global communications
- Semi-Lagrangian time-stepping implementation is non-conservative

Alternative Dynamical Core: Unstructured Edge-based Finite Volume MPDATA
Non-oscillatory forward-in-time scheme, capable of accomodating a wide range of scales and conservation problems
Unstructured prismatic meshes allow irregular spatial resolution and enhancement of polar regions.
Formulation for time-dependent non-orthogonal curvilinear coordinates on the manifold.

$$
\frac{\partial G \psi}{\partial t}+\nabla \cdot\left(G \mathbf{v}^{*} \psi\right)=G R
$$

See Szmelter and Smolarkiewicz (2010, JCP), for further discussion.

- Local computations in every subdomain

- Optimal Equal-Area Domain decomposition

- Small halo needs to be exchanged with surrounding subdomains for Distributed Memory algorithms
- Shared Memory parallelisation avoids further subdivision of subdomains
- Structured treatment of vertical direction discounts cost of horizontal indirect addressing

Evolutionary Introduction into IFS

- Construction of unstructured mesh using same data points as used by IFS' Spectral Transform Method
- Integration with ECMWF's infrastructure for archiving, post-processing, visualisation

Flexible Dynamic Framework

- Complex requirements for unstructured meshes
- Handling of distributed memory parallelisation
- Mesh specific routines: construction of dual mesh, periodicity, reading/writing fields, interpolation
- Multiple meshes to handle multigrid implementations
- Object Oriented Design using C++:
- Hierarchical nesting of topological objects
- Meshes, Field Sets, Fields
- Multiple Halo-Exchange patterns
- Fortran Interface allows direct access to internal data

Shallow Water Equations on the Sphere

$$
\frac{\partial G \mathcal{D}}{\partial t}+\nabla \cdot\left(G \mathbf{v}^{*} \mathcal{D}\right)=0
$$

$$
\frac{\partial G \mathcal{Q}_{x}}{\partial t}+\nabla \cdot\left(G v^{*} \mathcal{Q}_{x}\right)=G\left(-\frac{g}{h_{x}} \mathcal{D} \frac{\partial H}{\partial x}+f \mathcal{Q}_{y}-\frac{1}{G \mathcal{D}} \frac{\partial h_{x}}{\partial y} \mathcal{Q}_{x} \mathcal{Q}_{y}\right)
$$

$$
\frac{\partial G \mathcal{Q}_{y}}{\partial t}+\nabla \cdot\left(G \mathbf{v}^{*} \mathcal{Q}_{y}\right)=G\left(-\frac{g}{h_{x}} \mathcal{D} \frac{\partial H}{\partial x}+f \mathcal{Q}_{y}-\frac{1}{G \mathcal{D}} \frac{\partial h_{x}}{\partial y} \mathcal{Q}_{x} \mathcal{Q}_{y}\right)
$$

Meridional wind-component for flow over 2 km mountain at mid-latitudes; result obtained using Reduced Gaussian mesh with 16 km resolution.

3D Hydrostatic Equations in Isentropic Coordinates

Result obtained using Reduced Gaussian mesh with 1 km horizontal resolution, and 40 m vertical resolution on a small planet with radius 64 km .

Parallel Scaling results

Scaling results obtained with 10 km Reduced Gaussian mesh and 137 Levels.

Acknowledgements

CRESTA

