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Set-Up and Description

I Linear properties (stationary and propagating modes) of three
finite-difference schemes (TRISK: Ringler et. al 2010; HR95:
Heikes & Randall 1995 and NICAM: Tomita et. al 2001) on
the f-plane using perfect square and perfect hexagonal grids

I Operator null spaces (stationary modes) calculated as
0 = L~x → 0 = A~x (SVD problem)

I Dispersion relationship calculated as d~x
dt = L~x → iω~x = A~x

(eigenvalue problem)



Stationary and Propagating Modes in Discrete Models of
the Linear Shallow Water Equations

Stationary Modes

I TRISK and HR95 have no spurious stationary modes on PS
and PH meshes

I NICAM has a pressure mode on PS and PH meshes (two color
on PS, three color on PH)

Propagating Modes

I NICAM behaviour on PS and PH grids is very similar to
Arakawa A grid behaviour on PS grids
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Abstract

Shallow water equations are a useful analogue
of the fully compressible Euler equations for
atmospheric model development

Linear properties (propagating and stationary
modes) play an important physical role in the
behaviour of the atmosphere

Using the Atmospheric Dynamical Core
Testbed (ADCoT, described below), the linear
properties of three finite-difference schemes
(TRISK: Ringler et. al 2010; HR95:
Heikes & Randall 1995 and NICAM:
Tomita et. al 2001) on the
f-plane/sphere are compared to those of the
continuous equations

ADCOT: Design & Implementation

Horizontal meshes represented using MOAB
mesh library

Currently supported meshes: Perfect planar
square and hexagonal; geodesic (tweaked)
spherical meshes

Figure: Sample planar grids

Variables (scalar, vector, vector component)
placed arbitrarily on mesh elements

Operators defined as sparse matrices (linear)
or algebraic combinations of vector operators
and (sparse) matrix multiplication (non-linear)

~∇(
u2

2
+ gh)→ G(K~u2 + g~h)

Uses MOAB, PETSc and SLEPc to provide
grid management, linear/eigenvalue solvers
and I/O; main code written in Fortran 95

Code generation using Cheetah enables fast
prototyping and flexibility

Analysis packages are written in
Python/Fortran 95 using the NFFT, PyNGL,
Numpy, Scipy and Matplotlib libraries

Adams-Bashford and Runge-Kutta explicit
time stepping

TRISK, HR95 and NICAM horizontal
discretizations

Intended primarily for single moment
discretizations

Linear Shallow Water Equations on an f-plane

Momentum Form
∂~u

∂t
= −fk̂ × ~u− g~∇h

∂h

∂t
= −H(~∇ · u)

Vorticity-Divergence Form
∂ζ

∂t
= −fδ

∂δ

∂t
= fζ − g~∇2h

∂h

∂t
= −Hδ

Results: Stationary Modes

Operator null spaces (stationary modes) calculated
as 0 = L~x→ 0 = A~x (SVD problem)

Momentum Stationary Modes (C grid and A grid)

Consider generalized system as

fT~u+ gG~h = 0

HD~u = 0

Geostrophic Modes: D~u = 0 AND fT~u+ gG~h = 0
Hydrostatic Modes: Gh = 0 with ~h = const,~u = 0
Pressure Modes (Spurious): G~h = 0 with ~h = non-const,~u = 0

TD Modes (Spurious): T~u = 0 AND D~u = 0 with ~h = 0,~u =
non-const

In general, pressure modes occur only for A grid schemes,
while TD modes occur only for C grid scheme

When time discretization is introduced, additional stationary
modes (such as inertial modes) can occur

Vorticity-Divergence Stationary Modes (Z grid)

Consider generalized system as

f~δ = 0

f~ζ − gL~h = 0

H~δ = 0

Geostrophic Modes: f~ζ − gL~h = 0 with ~δ = 0
Hydrostatic Modes: Lh = 0 with ~h =const,~δ = 0,~ζ = 0
Pressure Modes (Spurious): L~h = 0 with
~h =non-const,~δ = 0,~ζ = 0

Immediate observation: Vorticity-Divergence schemes have
much simpler stationary mode structure than Momentum
based schemes

TRISK (C grid) has no spurious stationary modes
on PS, PH or geodesic meshes (T operator has a large
null space, but D does not)

HR95 (Z grid) has no spurious stationary modes on
PS, PH or geodesic meshes (L operator is well
behaved)

NICAM (A grid) has a pressure mode on doubly
periodic PS and PH meshes: comes from incorrect null
space in the gradient operator

Figure: Perfect Square and Hexagonal Grids, NICAM, Two and Three
Color Pressure Mode

Actual gradient null spaces depend critically on grid
size and periodicity assumptions (basically, the tiling
must be able to repeat an integer number of times and have
correct boundary conditions)

Example: PS 10x10 grid has spurious pressure modes for
NICAM, but PS 11x11 grid does not

Important question: does NICAM still have a
pressure mode on geodesic meshes? (possible that
”gradient correction” term and/or change in topology due
to pentagonal cells will remove it)

Important question: can numerical dissipation
remove or control the pressure mode on PS, PH
and geodesic meshes? (follow up: is this sensitive to the
type of diffusion- divergence damping vs. hyperdiffusion?)

Results: Propagating Modes

Dispersion relationship calculated as
d~x
dt

= L~x→ iω~x = A~x (eigenvalue
problem)

Fourier transforms (NFFT package) are
used to determine which spatial
wavenumbers each eigenvector/eigenvalue
pair is associated with

TRiSK (C-grid), HR95 (Z-Grid) and
NICAM (A-Grid) investigated on PS and
PH meshes

Figure: Perfect Square Grid, NICAM, λ
d
= 2.0

Figure: Perfect Hexagonal Grid, NICAM, λ
d
= 2.0

Results are similar for λ
d
= 0.1 (not

shown)

Analytic dispersion relations have been
calculated for PS and PH cases (numerical
results match to within expected precision;
not shown)

Allowed wavenumbers on PS and PH also
calculated (not shown)

All grid and scheme combinations
have stationary geostrophic modes
(these become Rossby modes when f is
variable)

All grid and scheme combinations
have correct number of geostrophic
and inertia-gravity wave modes
except TRISK on PH grids (has an
extra geostrophic mode, that becomes a
spurious Rossby mode when f is variable)

NICAM behaviour on PS and PH
grids is very similar to Arakawa A
grid behaviour on PS grids (PH is
more isotropic than PS, higher frequency
modes still have wrong group velocity sign,
qualitatively insensitive to λ

d
)

Important question: what are the
other effects of using numerical
dissipation to damp high-frequency
inertia-gravity waves in NICAM on
PS, PH and geodesic meshes?
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