Stationary and Propagating Modes in Discrete Models of the Linear Shallow Water Equations

Set-Up and Description

 Linear properties (stationary and propagating modes) of three finite-difference schemes (TRISK: Ringler et. al 2010; HR95: Heikes & Randall 1995 and NICAM: Tomita et. al 2001) on the **f-plane** using perfect square and perfect hexagonal grids

- ► Operator null spaces (stationary modes) calculated as $0 = \mathbb{L}\vec{x} \rightarrow 0 = \mathbf{A}\vec{x}$ (SVD problem)
- ► Dispersion relationship calculated as $\frac{d\vec{x}}{dt} = \mathbb{L}\vec{x} \rightarrow i\omega\vec{x} = \mathbf{A}\vec{x}$ (eigenvalue problem)

Stationary and Propagating Modes in Discrete Models of the Linear Shallow Water Equations

Stationary Modes

- TRISK and HR95 have no spurious stationary modes on PS and PH meshes
- NICAM has a pressure mode on PS and PH meshes (two color on PS, three color on PH)

Propagating Modes

 NICAM behaviour on PS and PH grids is very similar to Arakawa A grid behaviour on PS grids

Stationary and Propagating Modes in Discrete Models of the Linear Shallow Water Equations

Chris Eldred and David Randall

Department of Atmospheric Science, Colorado State University April 7th, 2014

Abstract

- Shallow water equations are a useful analogue of the fully compressible Euler equations for atmospheric model development
- Linear properties (propagating and stationary) modes) play an important physical role in the behaviour of the atmosphere

Results: Stationary Modes

- Operator null spaces (stationary modes) calculated as $0 = \mathbb{L}\vec{x} \rightarrow 0 = A\vec{x}$ (SVD problem)
- **Momentum Stationary Modes** (C grid and A grid)
- Consider generalized system as

$$f\mathrm{T}\vec{u} + g\mathrm{G}\vec{h} = 0$$

 $H \mathrm{D} \vec{u} = 0$

Results: Propagating Modes

- Dispersion relationship calculated as $\frac{d\vec{x}}{dt} = \mathbb{L}\vec{x}
 ightarrow i\omega \vec{x} = \mathrm{A}\vec{x}$ (eigenvalue) problem)
- Fourier transforms (NFFT package) are used to determine which spatial wavenumbers each eigenvector/eigenvalue

Using the Atmospheric Dynamical Core Testbed (ADCoT, described below), the linear properties of three finite-difference schemes (TRISK: Ringler et. al 2010; HR95: Heikes & Randall 1995 and NICAM: Tomita et. al 2001) on the **f-plane/sphere** are compared to those of the continuous equations

ADCOT: Design & Implementation

- Horizontal meshes represented using MOAB mesh library
- Currently supported meshes: Perfect planar square and hexagonal; geodesic (tweaked) spherical meshes

Figure: Sample planar grids

- Geostrophic Modes: $\mathbf{D}\vec{u} = 0$ AND $f\mathbf{T}\vec{u} + g\mathbf{G}\vec{h} = 0$
- Hydrostatic Modes: $\mathbf{G}h = 0$ with $\vec{h} = \text{const}, \vec{u} = 0$
- Pressure Modes (Spurious): $\mathbf{G}\vec{h} = \mathbf{0}$ with $\vec{h} = \text{non-const}, \vec{u} = \mathbf{0}$
- TD Modes (Spurious): $T\vec{u} = 0$ AND $D\vec{u} = 0$ with $\vec{h} = 0, \vec{u} = 0$ non-const
- In general, pressure modes occur only for A grid schemes, while TD modes occur only for C grid scheme
- When time discretization is introduced, additional stationary modes (such as inertial modes) can occur
- Vorticity-Divergence Stationary Modes (Z grid)
- Consider generalized system as

 $fec{\delta}=0$ $fec{\zeta} - g \mathrm{L}ec{h} = 0$ $H\vec{\delta}=0$

- Geostrophic Modes: $f\vec{\zeta} g\mathrm{L}\vec{h} = 0$ with $\vec{\delta} = 0$ • Hydrostatic Modes: $\mathrm{L}h=0$ with $\vec{h}=\mathrm{const}, \vec{\delta}=0, \vec{\zeta}=0$ Pressure Modes (Spurious): $\mathbf{L}\vec{h} = \mathbf{0}$ with
- \dot{h} =non-const, $\dot{\delta}=0, \dot{\zeta}=0$
- Immediate observation: Vorticity-Divergence schemes have much simpler stationary mode structure than Momentum based schemes

- pair is associated with
- TRiSK (C-grid), HR95 (Z-Grid) and NICAM (A-Grid) investigated on PS and PH meshes

Figure: Perfect Square Grid, NICAM, $\frac{\lambda}{d} = 2.0$

Figure: Perfect Hexagonal Grid, NICAM, $\frac{\lambda}{d} = 2.0$

- Variables (scalar, vector, vector component) placed arbitrarily on mesh elements
- Operators defined as sparse matrices (linear) or algebraic combinations of vector operators and (sparse) matrix multiplication (non-linear)

 $ec{
abla}(rac{u^2}{2}+gh)
ightarrow {
m G}({
m K}ec{u}^2+gec{h})$

- Uses MOAB, PETSc and SLEPc to provide grid management, linear/eigenvalue solvers and I/O; main code written in Fortran 95
- Code generation using Cheetah enables fast prototyping and flexibility
- Analysis packages are written in Python/Fortran 95 using the NFFT, PyNGL, Numpy, Scipy and Matplotlib libraries
- Adams-Bashford and Runge-Kutta explicit time stepping
- TRISK, HR95 and NICAM horizontal discretizations
- Intended primarily for single moment discretizations

- TRISK (C grid) has no spurious stationary modes on PS, PH or geodesic meshes (T operator has a large null space, but **D** does not)
- HR95 (Z grid) has no spurious stationary modes on PS, PH or geodesic meshes (L operator is well behaved)
- NICAM (A grid) has a pressure mode on doubly periodic PS and PH meshes: comes from incorrect null space in the gradient operator

Figure: Perfect Square and Hexagonal Grids, NICAM, Two and Three Color Pressure Mode

- Results are similar for $\frac{\lambda}{d} = 0.1$ (not shown)
- Analytic dispersion relations have been calculated for PS and PH cases (numerical results match to within expected precision; not shown)
- Allowed wavenumbers on PS and PH also calculated (not shown)
- All grid and scheme combinations have stationary geostrophic modes (these become Rossby modes when f is variable)
- All grid and scheme combinations have correct number of geostrophic and inertia-gravity wave modes

Linear Shallow Water Equations on an f-plane

- Actual gradient null spaces depend critically on grid size and periodicity assumptions (basically, the tiling must be able to repeat an integer number of times and have correct boundary conditions)
- Example: PS 10x10 grid has spurious pressure modes for NICAM, but PS 11x11 grid does not
- Important question: does NICAM still have a pressure mode on geodesic meshes? (possible that "gradient correction" term and/or change in topology due to pentagonal cells will remove it)
- Important question: can numerical dissipation remove or control the pressure mode on PS, PH and geodesic meshes? (follow up: is this sensitive to the type of diffusion- divergence damping vs. hyperdiffusion?)

except TRISK on PH grids (has an extra geostrophic mode, that becomes a spurious Rossby mode when f is variable) NICAM behaviour on PS and PH grids is very similar to Arakawa A grid behaviour on PS grids (PH is more isotropic than PS, higher frequency modes still have wrong group velocity sign, qualitatively insensitive to $\frac{\lambda}{d}$) Important question: what are the other effects of using numerical dissipation to damp high-frequency inertia-gravity waves in NICAM on **PS**, **PH** and **geodesic** meshes?

Eldred & Randall Linear Modes of the Shallow Water Equations