## A Local rolynarmonic spilne Rbr Ivethoa tor Nonhydrostatic Atmospheric Modeling

 Natasha Flyer (NCAR), Gregory Barnett (CU), Lou Wicker (NOAA-NSSL)Cartersian: FD6 or RBF




$$
\frac{\operatorname{sog}}{\operatorname{sen}}
$$

## A Local Polyharmonic Spline RBF Method for Nonhydrostatic Atmospheric Modeling

Natasha Flyer (NCAR), Gregory A. Barnett (CU-Boulder), Lou Wicker (NOAA-NSSL)

## Simplest RBF

The simplest RBF is the function $r$,
i.e., the $I_{2}$ norm or Euclidean distance

| Spatial Dimensiond | Definitito of $r$ |
| :---: | :--- |
| 1 | $r(x)=\sqrt{x^{2}}=\|x\|$ |
| 2 | $r(x, y)=\sqrt{x^{2}+y^{2}}$ |
| 3 | $r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ |
|  |  |

Polyharmonic Spline (PHS) RBF: $\boldsymbol{r}^{\boldsymbol{n}}$


Scattered node layout: 400 m resolution

Total number of nodes $N=1107$
Purple nodes show a local RBF stencil of size $n$. PHSRBF, with polynomials, are centered at each of these nodes $\left\{x_{j}\right\}, j=1, \ldots, n$, to calculate differentiation weights for $L$ at the blue node $x_{c}$

An Ex.: $r^{3}=\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}^{3}$ and up to linear polynomials
$\left[\begin{array}{cccccc}\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|_{2}^{3} & \cdots & \left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|_{2}^{3} & 1 & x_{1} & y_{1} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \left\|\mathbf{x}_{n}-\mathbf{x}_{1}\right\|_{2}^{3} & \cdots & \left\|\mathbf{x}_{n}-\mathbf{x}_{n}\right\|_{2}^{3} & 1 & x_{n} & y_{n} \\ 1 & \cdots & 1 & 0 & \cdots & 0 \\ x_{i} & \cdots & x_{n} & \vdots & \ddots & \vdots \\ y_{i} & \cdots & y_{n} & 0 & \cdots & 0\end{array}\right]\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n} \\ w_{n+1} \\ w_{n+2} \\ w_{n+3}\end{array}\right]=\left[\begin{array}{c}L\left\|\mathbf{x}-\mathbf{x}_{1}\right\|_{2}^{3} \mathbf{x}_{\mathbf{x}=\mathbf{x}_{c}} \\ \vdots \\ L\left(\left.\left\|\mathbf{x}-\mathbf{x}_{n}\right\|_{2}^{3}\right|_{\mathbf{x}=\mathbf{x}_{c}}\right. \\ \left.L 1\right|_{\mathbf{x}=\mathbf{x}_{c}} \\ \left.L x\right|_{\mathbf{x}=\mathbf{x}_{c}} \\ \left.L y\right|_{\mathbf{x}=\mathbf{x}_{c}}\end{array}\right]$

The weights are applied as in classical finite differences. This results in extremely sparse matrices.

## Governing Equations

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-u \frac{\partial u}{\partial x}-w \frac{\partial u}{\partial z}-c_{p} \theta \frac{\partial \pi}{\partial x}+\mu \Delta u \\
\frac{\partial w}{\partial t} & =-u \frac{\partial w}{\partial x}-w \frac{\partial w}{\partial z}-c_{p} \theta \frac{\partial \pi}{\partial z}-g+\mu \Delta w \\
\frac{\partial \theta}{\partial t} & =-u \frac{\partial \theta}{\partial x}-w \frac{\partial \theta}{\partial z}+\mu \Delta \theta \\
\frac{\partial \pi}{\partial t} & =-u \frac{\partial \pi}{\partial x}-w \frac{\partial \pi}{\partial z}-\frac{R_{d}}{c_{v}} \pi\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right)
\end{aligned}
$$

Straka Cold Density Current, $r^{7}$ and up to $4^{\text {th }}$ order polynomials

Dynamic viscosity $\mu=75 \mathrm{~m}^{2} / \mathrm{s}$
Time evolution at 50 m resolution





Solution at 900s: $\mathbf{5 0 m}$ to $\mathbf{8 0 0 m}$ resolution


Timings on ASUS laptop with an Intel i7-4700HQ CPU @ 2.4 GHz

## Dynamic viscosity of air 2(10) ${ }^{-5} \mathrm{~m}^{2} / \mathrm{s}$

 Time evolution at 25 m resolution

Close-up: $\mathbf{t}=\mathbf{4 5 0 s}, \mathbf{6 7 5 s}$, and 900 s at $\mathbf{2 5 m}$


Close-up: $\mathbf{t}=\mathbf{9 0 0}$ s at $\mathbf{5 0 m}$ and 100 m


Large $C^{0}$ Rising Thermal Bubble Dynamic viscosity of air 2(10) ${ }^{-5}$


50 m


100 m


200m
200m


Small $C^{1}$ Rising Thermal Bubble Dynamic viscosity of air $2(10)^{-5} \mathrm{~m}^{2} / \mathrm{s}$

$\stackrel{\text { E. }}{\text { E }}$
100 m


0

