A Local Polyharmonic Spline KBF Method for Nonhydrostatic Atmospheric Modeling Natasha Flyer (NCAR), Gregory Barnett (CU), Lou Wicker (NOAA-NSSL)

Cartersian: FD6 or RBF

Scattered: RBF

A Local Polyharmonic Spline RBF Method for Nonhydrostatic Atmospheric Modeling Natasha Flyer (NCAR), Gregory A. Barnett (CU-Boulder), Lou Wicker (NOAA-NSSL)

Simplest RBF

The simplest RBF is the function *r*, i.e., the I_2 norm or Euclidean distance

Spatial Dimension d	Definition of <i>r</i>
1	$r(x) = \sqrt{x^2} = x $
2	$r(x,y) = \sqrt{x^2 + y^2}$
3	$r(x, y, z) = \sqrt{x^2 + y^2 + z^2}$
:	:

Polyharmonic Spline (PHS) RBF: rⁿ

Scattered node layout: 400m resolution

Purple nodes show a local RBF stencil of size *n*. PHS-RBF, with polynomials, are centered at each of these nodes $\{x_{j}\}, j = 1, ..., n$, to calculate differentiation weights for L at the blue node x_c .

An Ex.: $r^3 = \|\mathbf{x} - \mathbf{x}_j\|_2^3$ and up to linear polynomials

				-				
$\ \mathbf{x}_1 - \mathbf{x}_1\ _2^3$	•••	$\ \mathbf{x}_1 - \mathbf{x}_n\ _2^3$	1	x_1	y_1	w_1		$L \ \mathbf{x} - \mathbf{x}_1\ _2^3 _{\mathbf{x} = \mathbf{x}_c}$
:	۰.	:	÷	:	:	÷		÷
$\ \mathbf{x}_n - \mathbf{x}_1\ _2^3$	•••	$\ \mathbf{x}_n - \mathbf{x}_n\ _2^3$	1	x_n	y_n	w_n	_	$L(\ \mathbf{x} - \mathbf{x}_n\ _2^3 _{\mathbf{x} = \mathbf{x}_c})$
1	•••	1	U	• • •		w_{n+1}		$L1 _{\mathbf{x}=\mathbf{x}_c}$
x_i	•••	x_n	:	۰.	÷	w_{n+2}		$Lx _{\mathbf{x}=\mathbf{x}_c}$
y_i		y_n	0	•••	0	w_{n+3}		$Ly _{\mathbf{x}=\mathbf{x}_c}$

The weights are applied as in classical finite differences. This results in extremely sparse matrices.

Governing Equations

$$\begin{split} &\frac{\partial u}{\partial t} = -u\frac{\partial u}{\partial x} - w\frac{\partial u}{\partial z} - c_p\theta\frac{\partial \pi}{\partial x} + \mu\Delta u, \\ &\frac{\partial w}{\partial t} = -u\frac{\partial w}{\partial x} - w\frac{\partial w}{\partial z} - c_p\theta\frac{\partial \pi}{\partial z} - g + \mu\Delta w \\ &\frac{\partial \theta}{\partial t} = -u\frac{\partial \theta}{\partial x} - w\frac{\partial \theta}{\partial z} + \mu\Delta\theta, \\ &\frac{\partial \pi}{\partial t} = -u\frac{\partial \pi}{\partial x} - w\frac{\partial \pi}{\partial z} - \frac{R_d}{c_v}\pi\left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right), \end{split}$$

