
Physics-dynamics coupling with Galerkin methods:  

equal-area physics grid  

Poster presentation at PDEs on the Sphere, April 10, 2014 
 

§ NCAR  *Sandia National Laboratories 

Peter Hjort Lauritzen§, M.A. Taylor*,  

S. Goldhaber§, R.D. Nair§,J.T. Bacmeister§ 
12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and

(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the

hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,

algorithm). An example of a two-dimensional extension

based on the PPM algorithm that is third-order is given

in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-

stead of the hybrid sigma-pressure vertical coordinate

a hybrid sigma-θ vertical coordinate is used (Chen and

Rasch 2009). Apart from the vertical coordinate the

model design is identical to CAM FV.

3.2. Cubed-sphere grid models

The assessment includes two dynamical cores that are

defined on cubed-sphere grids. The finite-volume cubed-

sphere model (GEOS FV CUBED) is a cubed-sphere

version of CAM FV developed at the Geophysical Fluid

Dynamics Laboratory (GFDL) and the NASA God-

dard Space Flight Center. The advection scheme is

based on the Lin and Rood (1996) method but adapted

to non-orthogonal cubed-sphere grids (Putman and Lin

2007,2009). Like CAM FV, the GEOS FV CUBED dy-

namical core is second-order accurate in two dimensions.

Both a weak second-order divergence damping mech-

anism and an additional fourth-order divergence damp-

ing scheme is used with coefficients 0.005× ∆ Am i n / ∆ t

and [0.05× ∆ Am i n ]
2

/ ∆ t , respectively, where ∆ Am i n

is the smallest grid cell area in the domain.

The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In

contrast to CAM FV and CAM ISEN, the cubed-sphere

model does not apply any digital or FFT filtering in

the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-

izontal momentum equations. This is accomplished

by subtracting the external-mode damping coefficient

(0.02× ∆ Am i n / ∆ t) times the gradient of the vertically-

integrated horizontal divergence on the right-hand-side

of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer

operators in the advection scheme (PPM) to avoid the

inconsistencies described in Lauritzen (2007) when us-

ing different orders of inner and outer operators. The

cubed-sphere grid is based on central angles. The angles

are chosen to form an equal-distance grid at the cubed-

sphere edges (undocumented). The equal-distance grid

is similar to an equidistant cubed-sphere grid that is ex-

plained in Nair et al. (2005). The resolution is specified

in terms of the number of cells along a panel side. As an

example, 90 cells along each side of a cubed-sphere face

yield a global grid spacing of about 1◦ .

The second cubed-sphere dynamical core is NCAR’s

spectral element High-Order Method Modeling Environ-

ment (HOMME) (Thomas and Loft 2004, Nair et al.

2009). Spectral elements are a type of a continuous-

Galerkin h-p finite element method (Karniadakis and

Sherwin 1999, Canuto et al. 2007), where h is the num-

ber of elements and p the polynomial order. Rather

than using cell averages as prognostic variables as in

geos fv cubed, the finite element method uses p-order

polynomials to represent the prognostic variables inside

each element. The spectral element method is compat-

ible, meaning it has discrete analogs of the key integral

properties of the divergence, gradient and curl operators,

making the method elementwise mass-conservative (to
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Consider, e.g., spectral element version of  

HOMME (dynamical core in CAM-SE) 
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Conventional physics-dynamics coupling:  state of the atmosphere passed to 

physics (a.k.a. sub-grid scale parameterizations) is based on the dynamics grid 

values (in this case GLL point values) 

 

• This grid is not isotropic (gets “worse” with increasing order) 

• Many parameterizations (e.g. convection) expect a grid-cell averaged state; 

the point value may not be representative of a grid cell mean value 
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The point value is the local extrema and it 
is not representative of the average 

atmospheric state in a control volume 
around the GLL point 

 
 
 

 
I argue that parameterizations should be given a 
grid cell mean value for the atmospheric state 
rather than a (GLL quadrature) point value 
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• Integrate polynomial basis over equal-area control volume 
(example: same number of degrees of freedom on both grids) 
(physics grid also supports CSLAM transport) 

I argue equal-area finite-
volume type physics grid is 
more consistent 
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Note also that physics grid averages/moves 
fields away from boundary of element where 

the solution is least smooth 
(in element interior the polynomials are C∞)  

• Integrate polynomial basis over equal-area control volume 
(example: same number of degrees of freedom on both grids) 
(physics grid also supports CSLAM transport) 
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• Coarser resolution physics grid (Williamson, 1999) 
-> according to linear theory the dynamical core has not converged at the grid  
     scale so one could argue that physics should not be passed non-converged scales 
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• Finer resolution physics grid 
-> dynamical core makes use of high-order basis function for advancing solution 
     in time; why should that information not be passed to physics?  
     (somewhat similar to sub-columns) 



Non-linear  
“terminator-toy”  
chemistry: 

Cl Cl2 

Cly=Cl+2*Cl2 

The  terminator  

test Simulations: CSLAM with shape-preserving limiter 



Cl Cl2 

Non-linear  
“terminator-toy”  
chemistry: 

The  terminator  

test 



Idealized forcing: Held-Suarez 



Idealized forcing: Held-Suarez 



Noise in rough topography run 





Grid-scale forcing and noise!
 
The spectral-element “reconstruction” is least smooth at the 
element boundaries where the C0 constraint is enforced; in 
climate simulation with CAM-SE noise in topographically 
forced flow typically appears near element boundaries (see 
Figures below). 
 
 
 
 
 
 
 
Figure: (left) 30 year average vertical pressure velocity for AMIP run 
using rough topography and no extra divergence damping. (right) 
Same as (left) but for precipitation rate.  

 
State from dynamical core 
passed to physics!
 
I argue that parameterizations should be given a grid cell 
mean value for the atmospheric state rather than a 
(quadrature) point value. 
  
 
 
 
 
 
 
 
 
Definition of physics grid: Define equal-area physics grid in 
each element by dividing each element into equi-distant 
control volumes and integrate Lagrange basis over finite-
volumes. 
 
 
 
 
 
 
 
 
 
Note that physics grid averages/moves fields away from 
boundary of elements where the solution is least smooth 
(in element interior the polynomials are C∞)  
 
 
 
    

Introduction!
 
Consider a cubed-sphere tiling of the sphere with quadratic 
elements on each face. Inside each element there are 4x4 
Gauss-Lobatto-Legendre (GLL) quadrature points: 
 
 
 
 
 
 
 
 
 
 
 
 

(Figure and caption from Nair et al., 2011) 

 
Assume a nodal basis set constructed using Lagrange polynomials hk(ξ), ξ=[-1,1]: 
 
 
 
where PN(ξ)  is the Legendre polynomial of degree N and P’N(ξ) is the derivative of 
PN(ξ). With 4 GLL points there are 4 Lagrange basis functions (k=0,1,2,3): 
 
 
 
 
 
 
 
 
 
 
 
 
The solution U at time t inside element j is given by 
 
 
 
where Uj,k(t) is the known value at the kth GLL point. Note that the solution is 
expressed as a Lagrange interpolation polynomial.  
 
Given GLL point values, Uj,k(t) = {0,0,1,0} for k=0,..,3, the Lagrange 
“reconstruction” is shown on the Figure below:  
 
 
 
 
 
 
 
 
 
 
For simplicity we show only 1D examples;  the 2D basis set can be constructed with 
a tensor product of the 1D basis functions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reverse domain filling’ in which a tracer initially equal to latitude is advected for 10 
days. (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. 
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Physics-dynamics workflow!
 
Consider the continuous Galerkin finite-element method 
used in CAM-SE (NCAR’s Community Atmosphere Model 
– Spectral Elements). 
 
For simplicity consider a domain of 3 elements in 1D and let 
the initial condition be a “global” degree 3 polynomial 
(which can be represented exactly by the polynomial basis). 
Note that GLL points at element edges are shared between 
neighboring elements: 
 
 
 
 
 
 
The solution is advanced one Runga-Kutta step inside each 
element: 
 
 
 
 
 
The solution is projected onto a C0 basis (GLL point values 
at element edges are averaged – blue curve below): 
 
 
 
 
 
 
This process is repeated for each Runga-Kutta step. Now the 
physical parameterization suite is called which, based on the 
atmospheric state at the GLL point values, computes 
tendencies at the quadrature points: 
 
 
 
 
 
 
Assume that there is only a physics update for the GLL point 
located at x=3 (see left Figure above). After physics has 
updated the atmospheric state at the GLL point(s), the 
polynomial “reconstruction” is shown on the Figure to the 
right (above). 
 
Note that the solution is only C0 at element boundaries!  
This is typically where noise appears! 
 

Held-Suarez forcing with 
“real-world” mountains!
 
 
 
 
 
 
 
 
 
 
 
Note: in this experiment bilinear interpolation was used for 
moving variables to and from physics-dynamics grid. 
 

Transferring variables from 
physics grid to dynamics grid 
 
Moving variables from dynamics to physics through basis 
function integration is likely the most consistent/accurate 
approach; going the other way is less obvious: 
 
We propose to reconstruct a polynomial           that satisfies 
the mass-conservation constraint in all physics grid finite-
volumes in element k: 
 
 
 
where j=1,..,nc (nc is the number of physics grid finite-
volumes in element k). This polynomial is then evaluated at 
the GLL points to provide physics tendencies to the 
dynamical core. 
 
Note: If dynamical core uses polynomial order N and  
nc=N+1 then           will be identical to the dynamical core 
Lagrange basis!  
 
What should resolution of physics grid be? nc=N-1? 
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terms of local orthogonal Cartesian coordinates x1,x2 ∈ [−�/4,�/4], as shown in
Fig. 9.22 . Thus C is essentially a union of six non-overlapping sub-domains (faces)
and any point on C can be uniquely represented by the ordered triple (x 1,x2,�)
where � = 1, . . . ,6, is the cube-face or panel index. The projections and the logical
orientation of the cube panels are described in Nair et al (2005b) and Lauritzen et al
(2010).
The equiangular central projection results in a uniform element width (�x 1 =

�x2) on C , which is an advantage for practical implementation. Figure 9.22 pro-
vides a schematic diagram of the mapping between the physical domainS (cubed-
sphere) and the computational domain C (cube).
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Fig. 9.22 A schematic diagram showing the mapping between each spherical tile (element) �S
e

of the physical domain (cubed-sphere) S onto a planar element �e on the computational domain
C (cube). For a DG discretization each element on the cube is further mapped onto a unique
reference element Q, which is dened by the Gauss-Lobatto-Legendre (GLL) quadrature points.
The horizontal discretization of the HOMME dynamical cores relies on this grid system.

The cubed-sphere has the attractive feature that the domain S is naturally de-
composed into non-overlapping quadrilateral elements (tiles) � S

e . This topology is
well-suited for high-order element-based methods such as spectral element or DG
methods, and amenable to efcient parallel implementation. Each face of the cubed-
sphere has Ne ×Ne elements, thus Nelm = 6N2e elements span the entire spherical
domain such thatS = ∪Nelm

e=1�
S
e ; in Fig. 9.22 Ne is 4. There exists a one-to-one cor-

respondence between the spherical element � S
e on S and the planar element �e

on C as depicted in Fig. 9.22. The element-wise continuous mapping allows us to
perform integrations on the sphere in a mapped (local) Cartesian geometry rather
than on the surface of the sphere. The High-Order Method Modeling Environment
(HOMME) developed at NCAR relies on this grid system (Dennis et al, 2005).
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The point value is the local 
extrema and it is not 

representative of the average 
atmospheric state in a control 
volume around the GLL point 
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I argue equal-area finite-
volume type physics grid 
is more consistent 
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Coarser?" Finer?"

M
ore inform

ation: contact pel@
ucar.edu ; H

om
e page: http://w

w
w.cgd.ucar.edu/cm

s/pel "


