
Motivation:!
• KIAPS (Korea Institute of Atmospheric Prediction 

Systems) is aiming to build Korea's next-generation 
operational global NWP model by 2019!

• Target: Spectral-element numerics, global resolution of 
10 km and beyond, fully compressible, nonhydrostatic!

• Time integration: Accurate, efficient, good parallel 
scalability -> HEVI!

• Compare competitive TIs in the HEVI context in terms of 
accuracy and efficiency!

Model: !
NUMA 2D CG (Height based Spectral Element 2D 
Nonhydrostatic Model )!

Applied Time Integrators:!
• 1D-IMEX Additive Runge-Kutta (ARK2)!
• Operator-Split RKR: Strang Carryover!
• Operator-Split RKR: Ascher-Ruuth-Spiteri (2,3,3) !
• Explicit SSP RK 3rd order!
Note:!
• Operator-Split RKR schemes treat all terms in the 

vertical implicit (including advection)!
• For vertical implicit solver, we use GMRES 
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• We compared all time integrators with respect to accuracy and computational efficiency. 

• For error norm calculation, we used 4th order accurate ARK4 results as our reference solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Non-hydrostatic inertia-gravity wave test case: Observe the evolution of a potential temperature perturbation in a channel with 

periodic boundary condition on the left and right. The initial perturbation propagates to the left and right symmetrically. We ran 

the test cases with 10th order polynomials, 250 m resolution, 0.2 s time steps for 3000 seconds. All 4 integrators show similar 

results (Fig. 1). RK3 and ARS3 show 3rd order convergence and ARK2 and UJ2 show 2nd order convergence as expected (Fig. 2). 

 

• Density current test case: Observe the cold bubble dropped in a neutrally stratified atmosphere. The cold bubble sinks and hits 

the ground. Then, it creates shear as it travels along the ground generating Kelvin-Helmholtz rotors. Viscosity coefficient 75 m2s–1 is 

applied and 8th order polynomials. 50 m resolution with 0.05 second time steps are used and the model is integrated up to 900 

seconds. We can observe 3 well developed rotors for all integrators and all results look very similar. Convergence study shows that 

ARK2, UJ2 and ARS3 show 2nd order convergence (Fig. 4). 

 

• Rising thermal bubble test case: We used 10th order polynomial with 5 m resolution, time step size of 0.0045 s and integrated up 

to 540 seconds. For the viscosity coefficient, we used 0.2 m2s–1. All 4 integrators show similar results (Fig. 5). RK3 shows 3rd order 

convergence while ARK2, UJ2, and ARS3 show 2nd order convergence (Fig. 6). Since ARS3 is only linearly 3rd order accurate, 2nd 

order convergence behavior is expected for ARS3 as this test case is vertically advection dominated. 

 

• We compared the wall clock time vs L2 error norm to assess each scheme’s efficiency. For the inertia-gravity wave and rising 

thermal bubble test case, ARS3 is more efficient than ARK2 when L2 error level is lower than 10–8. For the density current and rising 

thermal bubble test case, ARK2 was the most efficient HEVI scheme. 

• Newton method converges quadratically, but every iteration requires Jacobian computation which is 

costly. Rosenbrock method restricts the Newton iteration to be performed only once which reduces 

the cost for computing the Jacobian. Ullrich and Jablonowski (2012) introduces UJ2 and ARS3 where 

both schemes are constructed with Rosenbrock steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• For each horizontal column,  

we compute the implicit solution 

for the following. 

 

 

 

• In order to enhance computational efficiency, we utilize the Jacobian-Free Newton-Krylov (JFNK) 

method which only requires the Jacobian-vector product. With RKR, the Rosenbrock step is already 

applied and thus, Newton iteration is not required. For the Krylov solver, we use GMRES. The GMRES 

solver seeks the solution that minimizes the following residual. 

 

 

 

• We use the following form of epsilon. 

 

 

For fully compressible non-hydrostatic systems, the presence of the 

vertically propagating acoustic waves combined with the large 

aspect ratio of the horizontal and vertical grid scale makes the use 

of purely explicit time integrators unattractive. In order to 

overcome this problem, researchers have been working on 

soundproof governing equations or integrating the system in a 3-D 

semi-implicit manner. However, both methods need to solve 3-D 

elliptic equations which can be costly and potentially detrimental to 

the parallel scalability performance, especially for high resolution 

global models. Horizontally-Explicit Vertically-Implicit (HEVI) 

method is attractive in this regard considering that it overcomes the 

vertical CFL constraint while leaving the scalability performance 

intact as communications are local (Giraldo et al, 2013; Ullrich and 

Jablonowski, 2012; Weller et al., 2013). 

In this study, four different time integrators are compared on a 

spectral-element-based fully compressible non-hydrostatic vertical 

slice model. The four time integrators are: 1) the Strang carryover 

scheme (Ullrich and Jablonowski 2012, hereafter UJ2) the Ascher-

Ruuth-Spiteri (2, 3, 3) scheme (Ascher et al. 1997, hereafter ARS3) 

which are operator-split Runge-Kutta-Rosenbrock (RKR) methods, 3) 

1D Implicit-Explicit Additive Runge-Kutta method (Giraldo et al., 

2013, hereafter ARK2), and 4) explicit strong stability preserving 

Runge-Kutta method. The four methods’ accuracy and efficiency are 

compared and analyzed for rising thermal bubble, density current, 

and inertia-gravity wave test cases. 

 

Introduction 

• Equation set of NUMA 2D CG (Giraldo, 2013) is given as 

 

 

 

 

  

• Splitting density, potential temperature, and pressure into 

hydrostatic reference values and perturbation results 

 

 

we can rewrite the governing equation as 

 

 

 

• Horizontally/ Vertically decoupled system 

 

 

 

Governing Equation 

• While the Operator-split RKR treats horizontal forcing explicitly and vertical forcing implicitly, 

tackling the geometrical stiffness, 1D-IMEX method identifies stiffness in terms of wave propagation 

speed (stiff : acoustic and gravity waves, nonstiff: advection). 1D IMEX is differentiated with 3D 

semi-implicit by treating only the vertical stiff terms implicitly. 

• To derive 1D-IMEX method, the compact vector form of the governing equation can be written as  

 

 

 

 

 

 

• Additive Runge-Kutta (ARK) methods is one of IMEX schemes. It can achieve A- and L-stability 

properties of arbitrary (high) order. The coefficients is proposed by Giraldo et al.(2013). 

 

 

 

 

 

 

 

 Second order ARK (ARK2) method represented by Butcher Tableaux. 

 

 

 

 

 

 

• Q(i) can be rewritten as 

 

 

Introducing a new variable 

 

    gives the following linear system. 

 

 

 

 

 

 

 

 

ARK Methods 
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Numerical Results 

Conclusion 

• The distributions of eigenvalues are examined in case of DC (Fig. 7), 

RTB, and IG. For all 3 cases, the eigenvalue distribution for ARK2 is 

bounded by 0.4 while ARS3 is bounded at 1 which is larger. We believe 

that the smaller eigenvalue distribution of ARK2 is driving its GMRES 

solution to converge faster than ARS3 and UJ2. 

•  

 

 

 

 

 

 

 

 

 

 

• A sensitivity test of GMRES solver tolerance level was performed (Fig. 

8). Results indicate that ARS3 is more sensitive to the GMRES tolerance 

level than ARK. This indicates that we can use a larger GMRES error 

tolerance level for ARK which would make ARK run even faster. 

 

Operator-Split RKR Methods 

Discussion 

• For all 3 test cases, the field pattern results looked very similar for all 

time integrators.  

• ARK2, UJ2 shows 2nd order convergence rates and ARS3 shows 3rd order 

for the linear problem. For DC and RTB, ARS3 showed 2nd order 

convergence due to the test case’s inherent strong vertical advection. 

This is expected as ARS3 is only linearly 3rd order convergent in the 

vertical.  

• Wallclock analysis indicates that ARK2 is more efficient that UJ2.  

• Although ARK2 requires more implicit solves per timestep compared to 

UJ2, its smaller eigenvalue spread results in faster GMRES convergence.  

• ARS3 shows strong dependency to GMRES error tolerance level while 

ARK2 does not. Thus, in order to achieve 3rd order convergence for 

ARS3, a more stringent GMRES tolerance level is needed. 

UJ2 ARS3 

where  with GMRES solver tolerance 10-12  

where 

where 

Fig. 7. Spectra of the linear system of ARK2 (red) and ARS3 (blue) for DC. The 
distributions of their eigenvalues are bounded by 0.4 and 1, respectively.  

Fig. 8. A sensitivity test of GMRES solver tolerance for RTB: (a) GMRES tol=10-6 and 
(b) GMRES tol=10-12 

Fig. 2. Convergence rate (left) and computation 
efficiency results for IG. ARK2 and UJ2 shows second 
order accuracy, and ARS3 and RK3 are close to third 
order accuracy. ARK2 is more efficient than UJ2. For 
accuracy level between 10-5 to 10-6, ARK2 is the most 
efficient, except RK.  

Inertia-Gravity wave 

Fig. 1. Potential temperature perturbation of IG after 
3000 s for 250 m resolution with 10-th order  basis 
function polynomial. Time integration methods used 
are (a): RK3, (b): ARK2, (c): UJ2, and (d): ARS3 

Fig. 4. Convergence rate (left) and computation 
efficiency results for DC. ARK2, UJ2, and ARK3 are 
close to second order accuracy. ARK is more efficient 
than UJ2 and ARS3. 

Density Current 

Fig. 3. Potential temperature perturbation of DC after 
900 s for 50 m resolution with 8-th order polynomial. 
Time integration methods used are the same as Fig. 1. 

Fig. 6. . Convergence rate (left) and 
computation efficiency results for RTB.  

Rising Thermal Bubble 

Fig. 5. Potential temperature perturbation of 
RTB after 540 s for 5 m resolution with 10-th 
order polynomial. Time integration methods 
used are the same as Fig. 1. 

: density 
: velocity 

: potential temperature 
P: pressure 

: viscos coefficient 
PA:  atmo. Pressure at the ground 

R: universal gas constant 
Cp and Cv: specific  heats for 

 constant pressure and volume  
g: gravitational constant 


