Sparse Grids for Spectral Elements using L-Galerkin Operators on Polygonal Grids

J. Steppeler CSC , Hamburg M. Taylor, Sandia A. Dobler Uni Berlin Boulder 2014

FRANZ

Plan of Lecture:

- SE schemes use a basis function representation
- Grid points < ==== > function amplitudes
- == > most schemes: FV, SE, FD, C-grid on icosahedon, Cubed sphere, ying yan etc. can be understood as SE schemes
- L-Galerkin on sparse grids are a generalization of point quadrature SE to achieve:
 - High order on very irregular grids and superconvergence
 - Efficiency by sparseness, spectral procedure, better position of point cloud for high order differencing
 - Conservation
 - Effective implementation of cut cells for any order

Hexagon sparse grid O2 / o3 advection in x-direction

Standard O3 L-Galerkin (equivalent to point quadrature) is suitable for irregular resolution

The L-Galerkin spectral elements

- SE: Standard spectral elements (Quadrature G-Lobatto points or averaging at discontinuities)
- L-Galerkin schemes are local and use basis functions: Preregularisation (simple o3), Mass conserving interpolation and more
- Example (pre-regularization): $\partial_{\partial \rho} = \partial_{\partial x} RC\rho u$
- C: Collocation; R: Regularization 02-03 superconvergence is possible

Reprinted from JOURNAL OF COMPUTATIONAL PHYSICS All Rights Reserved by Academic Press, New York and London

Vol. 19, No. 4, December 1975 Printed in Belgium

On a High Accuracy Finite Difference Method

J. STEPPELER

Deutscher Wetterdienst, Zentralamt, Offenbach, West Germany Received November 18, 1974; revised May 5, 1975

FIG. 2. Approximating functions from P_2 by functions from S_2 .

Numerical Procedure

A time step is just a time translation mapping T following Q or Q'. For example, one obtains in this way from a function in S_p . In the next lime step one again

L-Galerkin procedure

Numerical properties of different Serendipity Schemes

Table 1:

CFL numbers for different schemes						
Scheme 🔸 🔸	-	CFL-	•	conservation+	-	suitable for ¶
						irregular resolution¶
0101 -	+	2.8 🖜	•	yes 🔸 📑	•	no¶
Classic 04:+ -+	•	2.1 →	+	not known 🔸	+	in 1-d¶
O2 Standard: 🔸	-	1.9 🔸	+	yes 🔸 🔸	+	yes¶
O2 with O4 diff: ->	+	4. →	•	Yes→ →	+	limited ¶
O2 with O2/O4 diff:	-+	1.4 🔫	÷	yes 🔹 📑	÷	yes 🖫
O3 with O4 diff: →	+	3.8 →	•	yes 🔸 🔺	+	limited ¶
O3 standard 📑	÷	1.6 👎	÷	yes 🔹 📑	÷	yes ¶

Basis functions for C-grid Scheme

Cut cells in a high (2 nd) order grid

 Only a part of the cell is taken by the atmosphere

3rd spectral elements with cut cells spectral elements of order 3: => cut cells work with 3rd order sparse Spectralelements

Why sparse L-Galerkin SE

- Construct high order conserving schemes, Numerical efficiency, cut cells of any order and for any polygonal cell (→ improved forecasts)
 For (continuous) SE: efficiency by sparseness, cut cells
- •For **FD**: high order + conservation, cut cells in high order, irregular cell structure and small cells as occur in cut cells or ying yang

State of development

- •Terrain following SE on Rhomboids: play models OK
- •FD-hexagons: ongoing
- •Cut cells: non conserving on C grid 3-d with real data OK

Impact of cut cells on cyclonic forecasts

Cut cells 10 days, u10m

Observation

forecasts

For tropical

- see:
- Atmos. Sci. lett. (2011), <u>**12**</u> 320pp;
- Geo. Mod. dev. (2013) **6** 875 pp

Terrain following, 10 days, u10m

Sparse rhomboidal/conserving serendipity elements Test case 6

Third Order Convergence of Shallow Water Model at Day 3

Simple O3: linear analysis, L-Galerkin

Eq spaced SE, Diffusion o4

GL spaced SE no diffusion

Pre-Regularization (o3-grid) equally spaced method stable, CFL with RK4: 3.9 Comparison:

Standard o1 GL/SE: LA=2.7;normal Galerkin, O3 based: LA=2. conservative eq spaced:LA=2.97;

eq. spaced/quadrature: unstable

Thank you for your attention

