An accurate and efficient framework for adaptive numerical weather prediction

Giovanni Tumolo

ICTP Abdus Salam - Trieste

< gtumolo@ictp.it >

Boulder, 9 April 2014

Outline

- Motivation and overview
- What's new on SISLDG formulation:
 - a novel SISL time integration approach
 - from the horizontal towards the vertical discretization
 - p-reduced "grid"
- Numerical validation:
 - horizontal:
 - Williamson's test 5
 - Williamson's test 6
 - vertical (preliminary results):
 - acoustic wave propagation
 - Warm bubble test
 - Inertia-gravity wave test
- Conclusions and future plans

- In collaboration with Luca Bonaventura (MOX-Politecnico di Milano)
- with thanks to Filippo Giorgi (ICTP Abdus Salam Trieste)
- and acknowledgements for funding from
 - The Abdus Salam International Centre for Theoretical Physics
 - The INdAM-GNCS
 - The Italian Ministery of Research and Education

Overview

 Goal: design a new generation *nonhydrostatic* dynamical core for the regional climate modelling system RegCM, developed at Abdus Salam ICTP-Trieste.

- First step: p-SISLDG, G.Tumolo, L.Bonaventura, M.Restelli, JCP 2013
 - coupling DG to SI-SL techniques (no CFL conditions);
 - introduction of p-adaptivity (flexible degrees of freedom);
- then extended to spherical geometry.
- Open issues:
 - first order accurate in time if off-centering was used;
 - pole problem (not for stability but for efficiency);
 - vertical discretization.

A novel SISL time integration approach: TR-BDF2

Given a Cauchy problem

$$\mathbf{y}' = \mathbf{f}(\mathbf{y}, t) \mathbf{y}(0) = \mathbf{y}_0$$

the TR-BDF2 method is defined by the two following implicit stages (Bank et al. IEEE trans. 1985):

$$\mathbf{u}^{n+2\gamma} - \gamma \Delta t \mathbf{f}(\mathbf{u}^{n+2\gamma}, t_n + 2\gamma \Delta t) = \mathbf{u}^n + \gamma \Delta t \mathbf{f}(\mathbf{u}^n, t_n),$$

$$\mathbf{u}^{n+1} - \gamma_2 \Delta t \mathbf{f}(\mathbf{u}^{n+1}, t_{n+1}) = (1 - \gamma_3) \mathbf{u}^n + \gamma_3 \mathbf{u}^{n+2\gamma}.$$

with $\gamma \in [0,1/2]$ fixed implicitness parameter and

Advantages of TR-BDF2

TR-BDF2, reformulated as a SDIRK method (Hosea Shampine ANM 1996),

$$\begin{aligned} \mathbf{k}_1 &= \mathbf{f} \left(\mathbf{u}^n, t_n \right), \\ \mathbf{k}_2 &= \mathbf{f} \left(\mathbf{u}^n + \gamma \Delta t \mathbf{k}_1 + \gamma \Delta t \mathbf{k}_2, t_n + \gamma \Delta t \right), \\ \mathbf{k}_3 &= \mathbf{f} \left(\mathbf{u}^n + \frac{1 - \gamma}{2} \Delta t \mathbf{k}_1 + \frac{1 - \gamma}{2} \Delta t \mathbf{k}_2 + \gamma \Delta t \mathbf{k}_3, t_{n+1} \right), \\ \mathbf{u}^{n+1} &= \mathbf{u}^n + \Delta t \left(\frac{1 - \gamma}{2} \mathbf{k}_1 + \frac{1 - \gamma}{2} \mathbf{k}_2 + \gamma \mathbf{k}_3 \right), \end{aligned}$$

exhibits interesting properties like:

- it is L-stable;
- it is second order accurate but embedded in a third order companion (hence "free" asymptotically correct error estimate);
- all the stages are evaluated within the the step interval;
- it is First-Same-As-Least (FSAL), hence only two implicit stages to evaluate per step;
- all the implicit stages have the same coefficients, hence they can be solved once.

Stability properties of TR-BDF2 TR-BDF2 off=0.0

Crank Nicolson off=0.1

TR-BDF2 off=0.2

SL reinterpretation of TR-BDF2: Shallow Water Equations (SWE)

- If viewed as a composite scheme, TRBDF2 can be easily reformulated in a semi-Lagrangian way, as time integrator for PDEs in advective form;
- if suitable semi-Lagrangian evolution operators for scalar end vector valued functions are introduced: $[E(t^i, \Delta \tau)G](\mathbf{x}) = G(t^i, \mathbf{x}_D)$ where $\mathbf{x}_D = \mathbf{x} - \int_{t^i}^{t^i + \Delta \tau} \mathbf{u}^n (\mathbf{X}(t; t^i + \Delta \tau, \mathbf{x})) dt$ and $\mathbf{X}(t^i; t^i + \Delta \tau, \mathbf{x})$ is the solution of:

$$\begin{cases} \frac{d}{dt} \mathbf{X}(t; t^{i} + \Delta \tau, \mathbf{x}) = \mathbf{u}^{n} \Big(\mathbf{X}(t^{i}; t^{i} + \Delta \tau, \mathbf{x}) \Big) \\ \mathbf{X}(t^{i} + \Delta \tau; t^{i} + \Delta \tau, \mathbf{x}) = \mathbf{x} \end{cases},$$

if Shallow Water Equations (SWE) are to be solved:

$$\frac{Dh}{Dt} = -h\nabla \cdot \mathbf{u}, \frac{D\mathbf{u}}{Dt} = -g\nabla h - f\hat{\mathbf{k}} \times \mathbf{u} - g\nabla b,$$

with *h*, **u** and *b* being fluid depth, velocity and bathymetry elevation respectively, and $\frac{D}{Dt}$ denoting the Lagrangian derivative operator,

SL reinterpretation of TR-BDF2: SWE

... then the TR stage of the SISL time semi-discretization of the SWE equations in vector form is given by

$$\begin{aligned} h^{n+2\gamma} &+ \gamma \Delta t \ h^n \ \nabla \cdot \mathbf{u}^{n+2\gamma} \\ &= E\left(t^n, 2\gamma \Delta t\right) \left[h - \gamma \Delta t \ h \ \nabla \cdot \mathbf{u}\right], \end{aligned}$$

$$\mathbf{u}^{n+2\gamma} + \gamma \Delta t \Big[g \nabla h^{n+2\gamma} + f \hat{\mathbf{k}} \times \mathbf{u}^{n+2\gamma} \Big] = -\gamma \Delta t \ g \nabla b \\ + E(t^n, 2\gamma \Delta t) \Big\{ \mathbf{u} - \gamma \Delta t \Big[g(\nabla h + \nabla b) + f \hat{\mathbf{k}} \times \mathbf{u} \Big] \Big\},$$

followed by the BDF2 stage:

$$\begin{aligned} h^{n+1} &+ \gamma_2 \Delta t \ h^{n+2\gamma} \ \nabla \cdot \mathbf{u}^{n+1} \\ &= (1-\gamma_3) E(t^n, \Delta t) h \\ &+ \gamma_3 E(t^n + 2\gamma \Delta t, (1-2\gamma) \Delta t) h, \end{aligned}$$

$$\mathbf{u}^{n+1} + \gamma_2 \Delta t \Big[g \nabla h^{n+1} + f \hat{\mathbf{k}} \times \mathbf{u}^{n+1} \Big] = -\gamma_2 \Delta t \ g \nabla b \\ + (1 - \gamma_3) E(t^n, \Delta t) \mathbf{u} + \gamma_3 E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) \mathbf{u}$$

Vertical Slice Equations (VSE)

• Euler equations (neglecting Coriolis force) in terms of $\Theta = T(\frac{p}{p_0})^{-R/c_p}, \Pi = (\frac{p}{p_0})^{R/c_p}$:

$$\begin{split} & \frac{D\Pi}{Dt} + \left(\frac{c_{\rho}}{c_{\nu}} - 1\right) \Pi \nabla \cdot \boldsymbol{u} = 0, \\ & \frac{D\boldsymbol{u}}{Dt} + c_{\rho} \Theta \nabla \Pi = -g\boldsymbol{k}, \\ & \frac{D\Theta}{Dt} = 0, \end{split}$$

being $\frac{D}{Dt}$ the Lagrangian derivative, c_p , c_v , R the constant pressure and constant volume specific heats and the gas constant of dry air.

Decompose thermodynamic variables in basic state and perturbation:

$$\Pi(x, y, z, t) = \pi^*(z) + \pi(x, y, z, t)$$

$$\Theta(x, y, z, t) = \theta^*(z) + \theta(x, y, z, t)$$

where π^*, θ^* are chosen s.t. $c_{\rho}\theta^* \frac{d\pi^*}{dz} = -g$,

• and consider a vertical slice $(\frac{\partial}{\partial y} = 0)$:

$$\begin{split} \frac{D\Pi}{Dt} &+ \left(\frac{c_p}{c_v} - 1\right) \Pi \nabla \cdot \boldsymbol{u} = 0\\ \frac{Du}{Dt} &+ c_p \Theta \frac{\partial \pi}{\partial x} = 0,\\ \frac{Dw}{Dt} &+ c_p \Theta \frac{\partial \pi}{\partial z} - g \frac{\theta}{\theta^*} = 0,\\ \frac{D\theta}{Dt} &+ w \frac{d\theta^*}{dz} = 0. \end{split}$$

SL counterpart of TR stage for VSE

$$\pi^{n+2\gamma} + \gamma \Delta t \ (c_{\rho}/c_{v} - 1) \Pi^{n} \nabla \cdot \mathbf{u}^{n+2\gamma} = -\pi^{*} + E \left(t^{n}, 2\gamma \Delta t\right) \left[\Pi - \gamma \Delta t \left(c_{\rho}/c_{v} - 1\right) \Pi \nabla \cdot \mathbf{u}\right]$$
$$u^{n+2\gamma} + \gamma \Delta t \ c_{\rho} \Theta^{n} \frac{\partial \pi}{\partial x}^{n+2\gamma} = E(t^{n}, 2\gamma \Delta t) \left[u - \gamma \Delta t \ c_{\rho} \Theta \frac{\partial \pi}{\partial x}\right],$$
$$w^{n+2\gamma} + \gamma \Delta t \left(c_{\rho} \Theta^{n} \frac{\partial \pi}{\partial z}^{n+2\gamma} - g \frac{\theta^{n+2\gamma}}{\theta^{*}}\right) = E(t^{n}, 2\gamma \Delta t) \left[w - \gamma \Delta t \left(c_{\rho} \Theta \frac{\partial \pi}{\partial z} - g \frac{\theta}{\theta^{*}}\right)\right],$$
$$\theta^{n+2\gamma} + \gamma \Delta t \frac{d\theta^{*}}{dz} w^{n+2\gamma} = E(t^{n}, 2\gamma \Delta t) \left[\theta - \gamma \Delta t \frac{d\theta^{*}}{dz}w\right].$$

Inserting the discretized energy eq. into the discrete vertical momentum eq.:

$$\begin{pmatrix} 1 + (\gamma \Delta t)^2 \frac{g}{\theta^*} \frac{d\theta^*}{dz} \end{pmatrix} w^{n+2\gamma} + \gamma \Delta t c_p \Theta^n \frac{\partial \pi}{\partial z}^{n+2\gamma} = \\ E(t^n, 2\gamma \Delta t) \left[w - \gamma \Delta t \left(c_p \Theta \frac{\partial \pi}{\partial z} - g \frac{\theta}{\theta^*} \right) \right] + \gamma \Delta t \frac{g}{\theta^*} E(t^n, 2\gamma \Delta t) \left[\theta - \gamma \Delta t \frac{d\theta^*}{dz} w \right]$$

 \implies Decoupling of discrete energy eq. from continuity and momentum eqs.

SL counterpart of BDF2 stage for VSE

$$\pi^{n+1} + \gamma_2 \Delta t \left(c_p / c_v - 1 \right) \Pi^{n+2\gamma} \nabla \cdot \mathbf{u}^{n+1} = -\pi^* + (1 - \gamma_3) \left[E \left(t^n, \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \right] + \gamma_3 \left[E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right] \right]$$

$$u^{n+1} + \gamma_{2}\Delta t \ c_{\rho}\Theta^{n+2\gamma}\frac{\partial \pi}{\partial x}^{n+1} = (1-\gamma_{3})[E\left(t^{n},\Delta t\right)u] + \gamma_{3}[E\left(t^{n}+2\gamma\Delta t,(1-2\gamma)\Delta t\right)u],$$

$$w^{n+1} + \gamma_2 \Delta t \left(c_\rho \Theta^{n+2\gamma} \frac{\partial \pi}{\partial z}^{n+1} - g \frac{\theta^{n+1}}{\theta^*} \right) = (1 - \gamma_3) [E(t^n, \Delta t) w] + \gamma_3 [E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) w],$$

$$\theta^{n+1} + \gamma_2 \Delta t \frac{d\theta^*}{dz} w^{n+1} = (1 - \gamma_3) [E(t^n, \Delta t) \theta] + \gamma_3 [E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) \theta].$$

Inserting the discretized energy eq. into the discrete vertical momentum eq.:

$$\left(1 + (\gamma_2 \Delta t)^2 \frac{g}{\theta^*} \frac{d\theta^*}{dz}\right) w^{n+1} + \gamma_2 \Delta t \ c_\rho \Theta^{n+2\gamma} \frac{\partial \pi}{\partial z}^{n+1} = (1 - \gamma_3) [E(t^n, \Delta t) w] + \gamma_3 [E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) w] + \gamma_2 \Delta t \frac{g}{\theta^*} \left\{ (1 - \gamma_3) [E(t^n, \Delta t) \theta] + \gamma_3 [E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) \theta] \right\}.$$

 \implies Decoupling of discrete energy eq. from continuity and momentum eqs.

Isomorphism btw. SWE and VSE SISL-TR step

$$h^{n+2\gamma} + \gamma \Delta t \ h^n \ \nabla \cdot \mathbf{u}^{n+2\gamma} = E\left(t^n, 2\gamma \Delta t\right) \left[h - \gamma \Delta t \ h \ \nabla \cdot \mathbf{u}\right]$$

 $\mathbf{u}^{n+2\gamma} + \gamma \Delta t \ g \nabla h^{n+2\gamma} = -\gamma \Delta t \ g \nabla b$ $+ E(t^n, 2\gamma \Delta t) \left\{ \mathbf{u} - \gamma \Delta t \left[g(\nabla h + \nabla b) \right] \right\}.$

$$\begin{aligned} \pi^{n+2\gamma} + \gamma \Delta t & (c_p/c_v - 1) \, \Pi^n \nabla \cdot \mathbf{u}^{n+2\gamma} = -\pi^* \\ + E & (t^n, 2\gamma \Delta t) \left[\Pi - \gamma \Delta t \left(c_p/c_v - 1 \right) \Pi \, \nabla \cdot \mathbf{u} \right], \end{aligned}$$

$$\begin{split} u^{n+2\gamma} &+ \gamma \Delta t \ c_p \Theta^n \frac{\partial \pi}{\partial x}^{n+2\gamma} = \\ E(t^n, 2\gamma \Delta t) \left[u - \gamma \Delta t \ c_p \Theta \frac{\partial \pi}{\partial x} \right], \end{split}$$

$$\begin{split} & \left(1 + (\gamma \Delta t)^2 \frac{g}{\theta^*} \frac{d\theta^*}{dz}\right) w^{n+2\gamma} + \gamma \Delta t c_p \Theta^n \frac{\partial \pi}{\partial z}^{n+2\gamma} = \\ & E(t^n, 2\gamma \Delta t) \left[w - \gamma \Delta t \left(c_p \Theta \frac{\partial \pi}{\partial z} - g \frac{\theta}{\theta^*} \right) \right] \\ & + \gamma \Delta t \frac{g}{\theta^*} E(t^n, 2\gamma \Delta t) \left[\theta - \gamma \Delta t \frac{d\theta^*}{dz} w \right]. \end{split}$$

Isomorphism btw. SWE and VSE SISL-BDF2 step

$$\begin{split} h^{n+1} &+ \gamma_2 \Delta t \ h^{n+2\gamma} \ \nabla \cdot \mathbf{u}^{n+1} = \\ & \left(1 - \gamma_3\right) E(t^n, \Delta t) h \\ &+ \gamma_3 E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) h, \end{split}$$

$$\begin{aligned} \mathbf{u}^{n+1} &+ \gamma_2 \Delta t \ g \nabla h^{n+1} = \\ &- \gamma_2 \Delta t \ g \nabla b \\ &+ (1 - \gamma_3) E(t^n, \Delta t) \mathbf{u} \\ &+ \gamma_3 E(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) \mathbf{u}. \end{aligned}$$

$$\begin{aligned} \pi^{n+1} &+ \gamma_2 \Delta t \left(c_p / c_v - 1 \right) \Pi^{n+2\gamma} \nabla \cdot \mathbf{u}^{n+1} = \\ &- \pi^* + (1 - \gamma_3) [E \left(t^n, \Delta t \right) \Pi] \\ &+ \gamma_3 [E \left(t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t \right) \Pi], \end{aligned}$$

$$u^{n+1} + \gamma_2 \Delta t \ c_{\rho} \Theta^{n+2\gamma} \frac{\partial \pi}{\partial x}^{n+1} = (1 - \gamma_3) [E (t^n, \Delta t) u] + \gamma_3 [E (t^n + 2\gamma \Delta t, (1 - 2\gamma) \Delta t) u],$$

$$\begin{pmatrix} 1 + (\gamma_2 \Delta t)^2 \frac{g}{\theta^*} \frac{d\theta^*}{dz} \end{pmatrix} w^{n+1} + \gamma_2 \Delta t \ c_p \Theta^{n+2\gamma} \frac{\partial \pi}{\partial z}^{n+1} = \\ (1 - \gamma_3)[E(t^n, \Delta t) \ w] + \gamma_3[E(t^n + 2\gamma \Delta t, (1 - 2\gamma)\Delta t) \ w] + \\ \gamma_2 \Delta t \frac{g}{\theta^*} \left\{ (1 - \gamma_3)[E(t^n, \Delta t) \ \theta] + \gamma_3[E(t^n + 2\gamma \Delta t, (1 - 2\gamma)\Delta t) \ \theta] \right\}$$

$$\begin{array}{cccc} h & \longleftrightarrow & \pi, \\ u & \longleftrightarrow & u, \\ v & \longleftrightarrow & W. \end{array}$$

DG space discretization

1

Defined a tassellation T_h = {K_l}^N_{l=1} of domain Ω and chosen ∀K_l ∈ T_h two integers p^h_l ≥ 0, p^u_l ≥ 0, at each time level tⁿ, we are looking for approximate solution s.t.

$$egin{array}{rcl} h^n, \pi^n, heta^n &\in & \mathcal{H}_h := \left\{ f \in L^2(\Omega) \, : \, f|_{\mathcal{K}_l} \in \mathbb{Q}_{p_l^h}(\mathcal{K}_l)
ight\} \ egin{array}{rcl} oldsymbol{u}^n &\in & V_h := \left\{ g \in L^2(\Omega) \, : \, g|_{\mathcal{K}_l} \in \mathbb{Q}_{p_l^u}(\mathcal{K}_l)
ight\}^2, \end{array}$$

- modal bases are used to span H_h , V_h ;
- L² projection against test functions (chosen equal to the basis functions),
- introduction of (centered) numerical fluxes,
- substitution of velocity d.o.f. from momentum eqs. into the continuity eq.,
- give raise, at each SI step, to a discrete (vector) Helmholtz equation in the fluid depth / pressure unknown only,

i.e. a sparse block structured nonsymmetric linear system is solved by GMRES with *block* diagonal (for the moment) preconditioning.

Static p-adaptation: reduced p as counterpart of reduced grid

 p_l can be imposed locally in order to control the local Courant number:

⇒ this leads to significant efficiency improvement:

$$\frac{\#\text{gmres-iterations}(p^h = \text{adapted})}{\#\text{gmres-iterations}(p^h = \text{uniform})} \approx 10\% \div 50\%,$$

Numerical Validation

Combination of static + dynamic p-adaptation: Williamson's test 5

 64×32 elements, $\max p^h = 4$, $\Delta t = 900s$ ($C_{cel} \approx 83$ without adaptivity)

$$\frac{\text{#gmres-iterations}(p^{h} = \text{adapted})}{\text{#gmres-iterations}(p^{h} = \text{uniform})} \approx 13\%, \qquad \Delta_{dof}^{n} = \frac{\sum_{l=1}^{N} (p_{l}^{n} + 1)^{2}}{N(p_{max} + 1)^{2}} \approx 45\%$$

Combination of static + dynamic p-adaptation: Williamson's test 6

 64×32 elements, $\max p^h = 4$, $\Delta t = 900s$ ($C_{cel} \approx 83$ without adaptivity)

$$\frac{\text{#gmres-iterations}(p^{h} = \text{adapted})}{\text{#gmres-iterations}(p^{h} = \text{uniform})} \approx 13\%, \qquad \Delta_{dof}^{n} = \frac{\sum_{l=1}^{N} (p_{l}^{n} + 1)^{2}}{N(p_{max} + 1)^{2}} \approx 45\%$$

Williamson's test 6: time convergence rate

Relative errors for different number of elements, with respect to NCAR spectral model solution at resolution T511:

$N_x imes N_y$	$\Delta t[min]$	$I_1(h)$	$l_2(h)$	$I_{\infty}(h)$
10× 5	60	2.92×10^{-2}	$3.82 imes 10^{-2}$	$6.75 imes 10^{-2}$
20 imes 10	30	$5.50 imes 10^{-3}$	$6.80 imes 10^{-3}$	$1.11 imes 10^{-2}$
40 imes 20	15	$1.40 imes10^{-3}$	$1.80 imes 10^{-3}$	$3.20 imes10^{-3}$
$N_x \times N_y$	Δt [min]	$I_1(u)$	$I_2(u)$	$I_{\infty}(u)$
10×5	60	4.065×10^{-1}	$3.775 imes10^{-1}$	$2.305 imes10^{-1}$
20 imes10	30	$7.79 imes 10^{-2}$	$7.33 imes 10^{-2}$	$5.67 imes 10^{-2}$
40 imes 20	15	$2.04 imes 10^{-2}$	$1.95 imes 10^{-2}$	$1.76 imes 10^{-2}$

p-adaptive acoustic wave propagation

 50×50 elements, $p^{\pi} = 4$, $p^{u} = 5$, $\Delta t = 10$ s, $C_{vel} \approx 2$

Warm bubble test (Carpenter et al., MWR 1990)

64 imes 80 elements, $p^{\pi} = 4, \ p^{u} = 5, \ \Delta t = 0.5 \, {
m s}, \ C \approx 17$

Inertia-gravity wave (Skamarock and Klemp, MWR 1994)

 300×10 elements, $p^{\pi} = 4$, $p^{u} = 5$, $\Delta t = 15$ s, $C \approx 25$

Conclusions, open issues and future perspectives

- In summary:
 - a novel TRBDF2-based SISL discretization has been presented within the DG framework for the rotating SWE as well as for the Euler equations on a vertical slice, that can be effectively applied to all geophysical scale flows.
 - the resulting scheme is
 - unconditionally stable,
 - full second order accurate in time,
 - arbitrary high order in space,
 - adapting the number of degrees of freedom in each element in order to balance accuracy and computational cost,
 - even if presented on structured meshes, extendeble to arbitrary non-structured;
 - numerical experiments prove the effectiveness of the proposed scheme.
- Now on the way:
 - introduction of the topography;
 - completion of implementation of p-adaptivity on the compressible equations;
 - improvement of the linear solver for the SI step: preconditioning strategy, from block diagonal to ILU.
- Future perspectives:
 - comparison with other stiff time integration techniques (e.g. Rosenbrock and exponential integrators);
 - parallelization strategy;
 - integration of SISLDG discretizations of SWE and VSE to develop the 3D nonhydrostatic dynamical core for RegCM;

Dynamic p-adaptation strategy

- > p-adaptivity easier by the use of modal bases: here tensor products of Legendre polynomials;
- hence, the representation for a model variable α becomes $(I = (I_x, I_y)$ multi-index):

$$\alpha(\boldsymbol{x})\big|_{K_{l}} = \sum_{k=1}^{p_{l}^{\alpha}+1} \sum_{l=1}^{\alpha_{l}+1} \alpha_{l,k,l} \psi_{l_{X},k}(\boldsymbol{x}) \psi_{l_{Y},l}(\boldsymbol{y}).$$

and its 2-norm is given by (in planar geometry):

- while the quantity $w_l^r = \sqrt{\frac{\varepsilon_l^r}{\varepsilon_l^{rot}}}$ will measure the relative 'weight' of the *r* degree modes
- Given an error tolerance $\epsilon_l > 0$ for all l = 1, ..., N, at each time step repeat following steps: 1) compute w_{p_i}

2.1) if $w_{p_i} \ge \epsilon_i$, then 2.1.1) set $p_i(\alpha) := p_i(\alpha) + 1$ 2.1.2) set $\alpha_{i,p_i} = 0$, exit the loop and go the next element

2.2) if instead $w_{p_i} < \epsilon_i$, then 2.2.1) compute w_{p_i-1} 2.2.2) if $w_{p_i-1} \ge \epsilon_i$, exit the loop and go the next element 2.2.3) else if $w_{p_i-1} < \epsilon_i$, set $p_i(\alpha) := p_i(\alpha) - 1$ and go back to 2.2.1.

Läuter unsteady flow: time convergence rate Errors after 5 days, $p^h = 4$, $p^u = 5$, $4 < C_{cel} < 26$, $1.25 < C_{vel} < 8$.

 20×10

 40×20

 80×40

1800

450

900

$N_x \times N_y$	$\Delta t [s]$	$l_1(h)$	$l_2(h)$	$I_{\infty}(h)$	q_2^{emp}
10 × 5	3600	$5.456 imes 10^{-3}$	$6.120 imes 10^{-3}$	$9.537 imes 10^{-3}$	-
20 imes 10	1800	$1.246 imes 10^{-3}$	$1.397 imes 10^{-3}$	$2.143 imes10^{-3}$	2.1
40 imes 20	900	$3.039 imes10^{-4}$	$3.410 imes10^{-4}$	$5.207 imes10^{-4}$	2.0
80×40	450	$7.548 imes 10^{-5}$	$8.475 imes10^{-5}$	$1.292 imes 10^{-4}$	2.0
$N_x \times N_y$	$\Delta t [s]$	<i>h</i> ₁ (<i>u</i>)	$l_2(u)$	$I_{\infty}(u)$	q_2^{emp}
10× 5	3600	$6.567 imes10^{-2}$	$7.848 imes 10^{-2}$	$1.670 imes 10^{-1}$	-
20 imes 10	1800	$1.665 imes 10^{-2}$	$1.994 imes 10^{-2}$	$3.931 imes 10^{-2}$	2.0
40 imes 20	900	$4.210 imes10^{-3}$	$5.032 imes10^{-3}$	$9.811 imes 10^{-3}$	2.0
80×40	450	$1.057 imes 10^{-3}$	1.261×10^{-3}	2.452×10^{-3}	2.0
$N_x \times N_y$	$\Delta t [s]$	$l_1(v)$	$l_2(v)$	$I_{\infty}(v)$	q_2^{emp}
10 × 5	3600	1.174×10^{-1}	1.198×10^{-1}	2.316×10^{-1}	-

 1.833×10^{-3} 1.874×10^{-3}

 2.939×10^{-2} 3.002×10^{-2} 5.561×10^{-2}

 $7.336 \times 10^{-3} \quad 7.497 \times 10^{-3} \quad 1.390 \times 10^{-2}$

1.0	-
4	
C	HXXII.
P	

2.0

2.0

2.0

 3.464×10^{-3}

Cross-polar flow (McDonald's and Bates, MWR 1989)

50 × 25 elements, $p^h = 4$, $p^u = 5$ $\Delta t = 900s$ ($C_{cel} \approx 43$, $C_{vel} \approx 4$ close to poles without adaptivity).

[days]	l ₁ (h)	$l_2(h)$	$I_{\infty}(h)$
10	$5.848 imes 10^{-6}$	$1.338 imes 10^{-5}$	1.101×10^{-4}
15	$8.365 imes 10^{-6}$	$1.871 imes 10^{-5}$	$1.014 imes 10^{-4}$

-

Table: Relative errors for *h* between statically adaptive and uniform solution.

 $\frac{\# \text{gmres-iterations}(p^h = \text{adapted})}{\# \text{gmres-iterations}(p^h = \text{uniform})} \approx 43\%$

Williamson's test 2: space convergence rate

Relative errors at time $t_f = 10$ days, different pol. deg., 10×5 elements, $\alpha = \pi/2 - 0.05$.

p^h	p^{u}	$\Delta t [s]$	$l_1(h)$	$l_2(h)$	$I_{\infty}(h)$
2	3	4800	$5.558 imes 10^{-3}$	$6.805 imes 10^{-3}$	1.914×10^{-2}
3	4	3600	$6.017 imes10^{-4}$	$8.176 imes 10^{-4}$	2.569×10^{-3}
4	5	2880	$1.743 imes 10^{-5}$	$2.405 imes 10^{-5}$	$9.024 imes 10^{-5}$
5	6	2400	$1.586 imes 10^{-6}$	$2.281 imes 10^{-6}$	1.058×10^{-5}
6	7	2057	$8.829 imes 10^{-8}$	$1.206 imes 10^{-7}$	4.926×10^{-7}
7	8	1800	$1.246 imes 10^{-8}$	$1.590 imes 10^{-8}$	$4.158 imes 10^{-8}$
8	9	1600	$5.641 imes 10^{-9}$	$5.952 imes10^{-9}$	6.320×10^{-9}

p ^h	p ^u	$\Delta t [s]$	$l_1(u)$	$l_2(u)$	$I_{\infty}(u)$
2	3	4800	6.351×10^{-2}	$6.432 imes 10^{-2}$	$1.143 imes 10^{-1}$
3	4	3600	$9.505 imes 10^{-3}$	$1.037 imes 10^{-2}$	2.106×10^{-2}
4	5	2880	$4.288 imes 10^{-4}$	$4.887 imes 10^{-4}$	$2.393 imes 10^{-3}$
5	6	2400	$4.598 imes10^{-5}$	$4.830 imes 10^{-5}$	$1.706 imes 10^{-4}$
6	7	2057	$2.057 imes10^{-6}$	$2.262 imes 10^{-6}$	$5.879 imes 10^{-6}$
7	8	1800	$2.162 imes 10^{-7}$	$2.358 imes 10^{-7}$	$6.428 imes 10^{-7}$
8	9	1600	$2.013 imes 10^{-8}$	$2.276 imes 10^{-8}$	$3.268 imes 10^{-8}$

Williamson's test 2: space convergence rate

Relative errors at time $t_f = 10$ days, different pol. deg., 10×5 elements, $\alpha = \pi/2 - 0.05$.

h					
<i>p''</i>	p	$\Delta t [s]$	$I_1(v)$	$l_2(v)$	$I_{\infty}(v)$
2	3	4800	1.001×10^{-1}	1.016×10^{-1}	$2.698 imes 10^{-1}$
3	4	3600	$1.859 imes 10^{-2}$	$1.823 imes 10^{-2}$	$6.848 imes 10^{-2}$
4	5	2880	$7.376 imes 10^{-4}$	$7.428 imes 10^{-4}$	2.884×10^{-3}
5	6	2400	$8.185 imes 10^{-5}$	$8.307 imes 10^{-5}$	$2.574 imes10^{-4}$
6	7	2057	$3.074 imes 10^{-6}$	$3.173 imes 10^{-6}$	$1.123 imes 10^{-5}$
7	8	1800	$3.370 imes 10^{-7}$	$3.432 imes 10^{-7}$	$1.323 imes 10^{-6}$
8	9	1600	$2.175 imes 10^{-8}$	$2.317 imes10^{-8}$	$5.124 imes10^{-8}$

Cold bubble test (Straka et al., IJNMF 1993)

80 × 20 elements, $p^{\pi} = 3$, $p^{u} = 3$, $\Delta t = 0.5$ s

