

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

Stefan Vater¹ Jörn Behrens¹

Kaveh Rahnema² Michael Bader²

¹Universität Hamburg ²

²TU München

2014 PDES Workshop "Partial Differential Equations on the Sphere"

Tsunami Modeling within ASCETE

Advanced Simulation of Coupled Earthquake and Tsunami Events

Tsunami Modeling within ASCETE

Advanced Simulation of Coupled Earthquake and Tsunami Events

Tsunami Modeling within ASCETE

Advanced Simulation of Coupled Earthquake and Tsunami Events

Tsunami Modeling

Numerical Simulation of Tsunami Events

Some Requirements

A numerical algorithm for tsunami simulation should

- accurately represent wave propagation and indundation at the coast,
- be well-balanced (preserves the still water steady state),
- be mass conservative,
- be robust (non-oscillatory, positive, ...), high order of minor priority,
- be computationally efficient (small stencil, ...).

naa

< 67 >

• system of conservation laws with source term (balance laws):

bathymetry

Coriolis force

bottom friction

eddy viscosity

 $\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) = \mathbf{S}(\mathbf{U}) \qquad \text{in } \Omega \times T \subset \mathbb{R}^2 \times \mathbb{R}^+$

with $\mathbf{U} = (\phi, \phi \boldsymbol{u})^T$, $\phi = gh$, subject to initial and boundary conditions

flux and source defined as

$$\begin{split} \mathbf{F}(\mathbf{U}) &= \begin{pmatrix} \phi \boldsymbol{u} \\ \phi \boldsymbol{u} \circ \boldsymbol{u} + \frac{1}{2} \phi^2 \mathbf{I} \end{pmatrix} \\ \mathbf{S}(\mathbf{U}) &= -\begin{pmatrix} 0 \\ \mathbf{S}_{b} + \mathbf{S}_{r} + \mathbf{S}_{f} + \mathbf{S}_{v} \end{pmatrix} \end{split}$$

 $egin{aligned} \mathbf{S}_{\mathrm{b}} &= \phi g
abla b \ \mathbf{S}_{\mathrm{r}} &= f(m{k} imes \phi m{u}) \ \mathbf{S}_{\mathrm{f}} &= -\gamma^2 m{u} \|m{u}\| / \phi^{1/3} \ \mathbf{S}_{\mathrm{v}} &= u
abla (\phi m{u}) \end{aligned}$

< □ > < 三 > 三 のへで

• Galerkin ansatz (residual orthogonal to some function space V):

$$\int_{\Omega} \left(\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) - \mathbf{S}(\mathbf{U}) \right) \psi \, \mathrm{d}\boldsymbol{x} = 0 \quad \forall \psi \in V$$

• weak DG formulation (integration by parts):

$$\int_{T_{\omega}} \left(\frac{\partial \mathbf{U}_h}{\partial t} - \mathbf{F}_h \cdot \nabla - \mathbf{S}_h \right) \psi_{\omega} \, \mathrm{d}\boldsymbol{x} = - \int_{\partial T_{\omega}} \psi_{\omega} \mathbf{F}_h^* \cdot \boldsymbol{n} \, \mathrm{d}\sigma$$

Representation on reference element:

- nodal approach based on electrostatics / Fekete points
- local solution represented by Lagrange polynomials $\psi_i \in V_h$ of degree p

$$\mathbf{U}(\boldsymbol{\xi},t) = \sum_{i=1}^{r} \mathbf{U}(\boldsymbol{\xi}_{i},t)\psi_{i}(\boldsymbol{\xi}) = \sum_{i=1}^{r} \tilde{\mathbf{U}}_{i}(t)\psi_{i}(\boldsymbol{\xi})$$

following GIRALDO ET AL. [2002], GIRALDO [2006]

SSP Multistage scheme:

$$\begin{aligned} \mathbf{U}_{h}^{(0)} &= \mathbf{U}_{h}^{n} \\ \mathbf{U}_{h}^{(i)} &= \Lambda \Pi_{h} \left\{ \sum_{l=0}^{i-1} \alpha_{il} \mathbf{U}_{h}^{(l)} + \beta_{il} \Delta t^{n} \mathbf{H}_{h} (\mathbf{U}_{h}^{(l)}) \right\} \quad \text{for } i = 1 \dots k+1 \\ \mathbf{U}_{h}^{n+1} &= \mathbf{U}_{h}^{(k+1)} \end{aligned}$$

Intermediate solution limited with $\Lambda \Pi_h$ after each stage:

• TVB corrected minmod function [COCKBURN AND SHU, 1998]:

$$\bar{m}(u_{i,x}, \bar{u}_{i+1} - \bar{u}_i, \bar{u}_i - \bar{u}_{i-1})$$

- limiting in conservative (h, hu) vs. hydrostatic variables (h + b, hu)
- positivity preservation [XING ET AL., 2010]:

$$\tilde{U}^{n}(x,y) = \theta \left(U^{n}(x,y) - \overline{U^{n}} \right) + \overline{U^{n}} \quad \text{with } \theta = \min \left(1, \frac{\overline{\phi^{n}}}{\overline{\phi^{n}} - \min_{x} \{ \phi^{n}(x) \}} \right)$$

2D Test Case Quasi Stationary Vortex Advected by Constant Background Flow

• using grid library amatos (conforming elements, refinement by bisection)

- linear elements, no limiting
- simple gradient based error indicator

▲ 御 ▶ → 三

э

SQC.

- 200 cells, $\Delta t = 1.0$, CFL ≈ 0.2
- limiting in (*h*, *hu*)

• analytical solution by Thacker (1981):

$$h(x,t) + b(x) = h_0 - \frac{B^2}{4g} \left(1 + \cos(2\omega t)\right) - \frac{Bx}{2a} \sqrt{\frac{8h_0}{g}} \cos \omega t,$$

$$\omega=\sqrt{2gh_0}/a,\,B=5$$

initial momentum at t = 0 is set to zero

1D Results

Oscillatory Flow in a Parabolic Bowl

t = 1000

t = 3000

cen

Benchmark problem 1 from "The Third International Workshop on Long-Wave Runup Models" (2004).

http://isec.nacse.org/workshop/2004_cornell/bmark1.html

- uniformly sloping beach with b(x) = 5000 0.1x
- prescribed initial surface elevation and momentum with $(hu)(x,0)\equiv 0$
- domain [-500; 50000], 1010 cells
- $\Delta t = 0.05$, CFL ≈ 0.2
- limiting in (h, hu)

1D Results

Tsunami Runup onto a Sloping Beach

Vater et al., Parallel Adaptive Tsunami Modelling with DG, PDEs 2014

Assuming a fixed spatial grid (no moving grid points), piecewise linear DG discretization:

- Tsunami Runup at t = 50
- limiting in (h, hu)

flood type

dam-break type

Well-balancing with wetting/drying:

- distinguish between "flood type" and "dam-break type" cells
- neglect gradient in surface elevation in flood-type cells
- inner cell redistribution of tendencies to wet nodes in flood-type cells
- limiting only in fully wet cells, adjustment of negative heights

1D Results Lake at Rest

- domain [0, 1] with periodic boundary conditions
- still water $u \equiv 0$
- 50 cells, $\Delta t = 0.002$, CFL ≈ 0.3 , $t_{\rm max} = 20$
- limiting in (h+b,hu)

Test initialized with zero momentum field:

... with random deviations in the momentum field of the order 10^{-8} :

JAC.

э

< 🗗

Parallel AMR for Triangular Grids Challenges for Grid Refinement and Coarsening

cen

- strong, dynamically adaptive refinement (to capture solution and geometrical details etc.)
- frequent re-meshing of large parts of the grid
- substantial change of problem size during simulation

Parallel AMR for Triangular Grids

Challenges for Parallelisation

- trend to multi-/manycore; multiple layers of parallelism
- dynamic load balancing due to remeshing and varying computational load
- goal: retain locality properties (partitioning)

Structured Triangular Meshes

"Newest Vertex Bisection" Refinement & Sierpinski Curves

- recursively structured triangular grids (newest vertex bisection)
- fully adaptive grid described by a corresponding refinement tree
- element orders (tree and grid cells) defined by Sierpinski space-filling curves
- minimum memory requirements
 - \rightarrow triangle strips as data structure
- exploit locality properties for cache and parallel efficiency

Test Scenario

Adaptive Tsunami Simulation with Finite Volumes

- basic shallow water model, Finite Volume discretisation
- augmented Riemann solver (George, 08) provided by GeoClaw
- dynamically adaptive grid with up to 100 Mio grid cells
- refinement/coarsening and load balancing after each time step

Summary

- tsunami modeling on adaptive triangular grids
- · discretization by discontinuous Galerkin method
- wetting & drying for DG (positivity vs. well-balancing)
- parallel adaptive triangular grids (Sierpinski SFC)
- locality properties for cache and parallel efficiency

Outlook

- further development of wetting/drying treatment (positivity AND well-balancing)
- extension to 2D, realistic tsunami simulations
- implementation into parallel framework for HPC