Curl-free pressure gradients over orography in a solution of the fully compressible Euler equations with long time-steps

Hilary Weller ${ }^{1}$ Ava Shahrokhi ${ }^{2}$

Meteorology, University of Reading, UK^{1}
Engineering, Leeds University, UK^{2}

$$
7 \text { April } 2014
$$

Motivation

- Mimetic properties over orography
- using mimetic horizontal discretisation in the vertical
- Long time-steps
- suitable for massively parallel
- suitable for unstructured grids
- simpler than SISL (semi-implicit, semi-Lagrangian)

Representing Mountains

> For numerous reasons in meteorology the cells should line up in columns

Representing Mountains

For numerous reasons in meteorology the cells should line up in columns
\therefore the mesh is non-orthogonal over orography

Representing Mountains

For numerous reasons in meteorology the cells should line up in columns
\therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions

Representing Mountains

For numerous reasons in meteorology the cells should line up in columns
\therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions
\therefore find $\frac{\partial p}{\partial x}$ co-located with u without knowing p at this altitude (eg Klemp, Zangl)

Representing Mountains

For numerous reasons in meteorology the cells should line up in columns
\therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions
\therefore find $\frac{\partial p}{\partial x}$ co-located with u without knowing p at this altitude (eg Klemp, Zangl)
\rightarrow pressure gradients not curl free

Alternative: non-orthogonal prognostic variables

 (covariant)

Following horizontal discretisations on non-orthogonal grids:

Prognostic variables: $\mathbf{u} \cdot \hat{\mathbf{d}}$
where $\mathbf{d}_{f}=\mathbf{x}_{i}-\mathbf{x}_{j}$
\rightarrow curl free pressure gradients
\rightarrow no spurious generation of vorticity

Non-orthogonal prognostic variables (covariant)

Need mass flux $u_{n}=\mathbf{u} \cdot \hat{\mathbf{n}}$
in continuity equation
Requires operator H from space of all $u_{d} \mathrm{~S}$ to space of all $u_{n} \mathrm{~s}$.

$$
u_{n}=H u_{d}
$$

(following Thuburn, Dubos, Cotter, 2014)

- First reconstruct full velocity at face f from $u_{d^{\prime}}$ at the surrounding faces, f^{\prime} :

$$
\begin{aligned}
& \qquad \mathbf{u}=T_{i}^{-1} \sum_{f^{\prime}} \mathbf{d}_{f^{\prime}} A_{f^{\prime}} u_{d^{\prime}} \\
& \text { where } T=\sum_{f^{\prime}} \hat{\mathbf{d}}_{f^{\prime}} \hat{\mathbf{d}}_{f^{\prime}}^{T} A_{f^{\prime}}
\end{aligned}
$$

- Next take component in direction \mathbf{n} and correct the component in direction \mathbf{d} so that the result is exact on an orthogonal face:

Least squares fit which reconstructs a uniform velocity field

$$
u_{n}=\mathbf{u} \cdot \hat{\mathbf{n}}+\left(u_{d}-\mathbf{u} \cdot \hat{\mathbf{d}}\right)(\hat{\mathbf{n}} \cdot \hat{\mathbf{d}})
$$

The resulting H is asymmetric which violates energy conservation

Results

Resting stratified atmosphere over a steep mountain

- should remain stationary
- potential temperature contours should remain horizontal

Results

Resting stratified atmosphere over a steep mountain

- should remain stationary
- potential temperature contours should remain horizontal
$\partial p / \partial x$ version, implicit gravity waves $\Delta t=100 \mathrm{~s}$. Maximum $N \Delta t=2$

H version, implicit gravity waves $\Delta t=100 \mathrm{~s}$. Maximum $N \Delta t=2$

\cdots																
,								?								
\cdots																
\square								F								
\bigcirc			,				\cdots									
\cdots																
\square			-				\cdots	-								
\checkmark				-		T										-
,																
-			-				\cdots									
\square																
$\square-1$	\square							\square								
\cdots							-									
\cdots																
			\square					T								
\square																
-																
-							\cdots									
-				-		-										
-																\square
\square							\cdots									-
																-
\square			-				T	-	-	-						\square
-	7		$\underline{\square}$	\pm	-	\square	\square	\pm	-	-	$\underline{+}$	-				$\underline{\square}$
-	+	$\underline{-}$	$\stackrel{+}{4}$	\square	?	$\underline{-}$	$\underline{+}$	I	ㄴ	,	\bigcirc	+	+	-	+	$\underline{\square}$
-	\pm		\cdots	\square	\square	$\underline{\square}$	\cdots	7-	$\underline{ }$	\square	\square	\square	-		\square	$\underline{\square}$
-TE	+		$\underline{\square}$	\square	\#	\square	$\underline{-}$	-	\cdots	\square	\square		-	$\underline{\square}$		\longrightarrow
				-		\square			-	-	-		-			\square
								-								
\|							-									
$\square \times$,									
+																
N			,													

Maximum Spurious Velocity

New models

Figure 4 from Klemp [2011]

Energy Conservation

Gravity-waves over orography $\Delta t=40 \mathrm{~s}, u \Delta t / \Delta x \approx 1, w$ every $.05 \mathrm{~m} / \mathrm{s}$

Met Office [Melvin et al., 2010]

Linear analytic solution

Semi-implicit acoustic and gravity waves

For structured, lat-lon grid models, this is usually done by

- treating the z coordinate direction differently
- expressing variables as mean and perturbation quantities

Semi-implicit acoustic and gravity waves

For structured, lat-lon grid models, this is usually done by

- treating the z coordinate direction differently
- expressing variables as mean and perturbation quantities

Neither of these are necessary:
Starting from the Euler equations:

Momentum
Continuity Potential temperature State
where potential temperature
Exner function of pressure $\Pi=\left(p / p_{0}\right)^{\kappa}$
In order to treat acoustic and gravity wave implicitly, these must ALL be combined to form a linearised equation for Π

Semi-implicit acoustic and gravity waves

Prognostic variables:

Overview:

Semi-implicit acoustic and gravity waves

Prognostic variables:

Overview:

- Substitute θ equation into momentum equation

Semi-implicit acoustic and gravity waves

Prognostic variables:

Overview:

- Substitute θ equation into momentum equation
- Substitute u_{n} into continuity equation

Semi-implicit acoustic and gravity waves

Prognostic variables:

Overview:

- Substitute θ equation into momentum equation
- Substitute u_{n} into continuity equation
- Use equation of state to replace ρ with Π in continuity equation: \rightarrow Helmholtz equation for Π

Substitute θ into momentum equation

Rearrange θ equation to give θ^{n+1} in terms of u_{n}^{n+1} ($1^{\text {st }}$ order in time for brevity):

$$
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=0 \rightarrow \quad \theta^{n+1} \quad=\theta^{n}-\Delta t \mathbf{u} \cdot \nabla \theta^{n}
$$

Substitute θ into momentum equation

Rearrange θ equation to give θ^{n+1} in terms of u_{n}^{n+1} ($1^{\text {st }}$ order in time for brevity):

$$
\begin{array}{ll}
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=0 \rightarrow \quad \theta^{n+1} & =\theta^{n}-\Delta t \mathbf{u} \cdot \nabla \theta^{n} \\
=\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot \nabla \theta^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n} \\
\text { where } \quad \mathbf{u}^{\perp}=\mathbf{u}-(\mathbf{u} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
\end{array}
$$

Substitute θ into momentum equation

Rearrange θ equation to give θ^{n+1} in terms of $u_{n}^{n+1}\left(1^{s t}\right.$ order in time for brevity):

$$
\begin{array}{ll}
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=0 \rightarrow \quad \theta^{n+1} & =\theta^{n}-\Delta t \mathbf{u} \cdot \nabla \theta^{n} \\
=\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot \nabla \theta^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n} \\
\text { where } \quad \mathbf{u}^{\perp}=\mathbf{u}-(\mathbf{u} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
\end{array} \quad .
$$

Substitute into the $c_{p} \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_{n}^{n+1} in terms of Π^{n+1} :

Substitute θ into momentum equation

Rearrange θ equation to give θ^{n+1} in terms of $u_{n}^{n+1}\left(1^{s t}\right.$ order in time for brevity):

$$
\begin{array}{ll}
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=0 \rightarrow \quad \theta^{n+1} & =\theta^{n}-\Delta t \mathbf{u} \cdot \nabla \theta^{n} \\
=\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot \nabla \theta^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n} \\
\text { where } \quad & \mathbf{u}^{\perp}=\mathbf{u}-(\mathbf{u} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
\end{array} \quad \begin{aligned}
& \quad \nabla_{n} \theta=(\nabla \theta) \cdot \hat{\mathbf{n}}
\end{aligned}
$$

Substitute into the $c_{p} \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_{n}^{n+1} in terms of Π^{n+1} :

$$
\begin{aligned}
\frac{u_{n}^{n+1}-u_{n}^{n}}{\Delta t} & +(\ldots)^{n} \cdot \hat{\mathbf{n}}=\mathbf{g} \cdot \hat{\mathbf{n}} \\
& -c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

Substitute θ into momentum equation

Rearrange θ equation to give θ^{n+1} in terms of $u_{n}^{n+1}\left(1^{s t}\right.$ order in time for brevity):

$$
\begin{array}{ll}
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=0 \rightarrow \quad \theta^{n+1} & =\theta^{n}-\Delta t \mathbf{u} \cdot \nabla \theta^{n} \\
=\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot \nabla \theta^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n}
\end{array} \quad \begin{aligned}
& \text { where } \quad \mathbf{u}^{\perp}=\mathbf{u}-(\mathbf{u} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \\
& \quad \nabla_{n} \theta=(\nabla \theta) \cdot \hat{\mathbf{n}}
\end{aligned}
$$

Substitute into the $c_{p} \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_{n}^{n+1} in terms of Π^{n+1} :

$$
\begin{aligned}
\frac{u_{n}^{n+1}-u_{n}^{n}}{\Delta t} & +(\ldots)^{n} \cdot \hat{\mathbf{n}}=\mathbf{g} \cdot \hat{\mathbf{n}} \\
& -c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

Rearrange to get all terms involving u_{n}^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^{n} on the LHS):

Substitute θ into momentum equation

$$
\begin{aligned}
\frac{u_{n}^{n+1}-u_{n}^{n}}{\Delta t} & +(\ldots)^{n} \cdot \hat{\mathbf{n}}=\mathbf{g} \cdot \hat{\mathbf{n}} \\
& -c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

Rearrange to get all terms involving u_{n}^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^{n} on the LHS):

$$
\begin{aligned}
& u_{n}^{n+1}\left(1-\Delta t^{2} c_{p} \nabla_{n} \theta^{n} \nabla_{n} \Pi^{n}\right)=u_{n}^{n}-\Delta t(\ldots)^{n} \cdot \hat{\mathbf{n}}+\Delta t \mathbf{g} \cdot \hat{\mathbf{n}} \\
&-\Delta t c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

Substitute θ into momentum equation

$$
\begin{aligned}
\frac{u_{n}^{n+1}-u_{n}^{n}}{\Delta t} & +(\ldots)^{n} \cdot \hat{\mathbf{n}}=\mathbf{g} \cdot \hat{\mathbf{n}} \\
& -c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}-\Delta t u_{n}^{n+1} \nabla_{n} \theta^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

Rearrange to get all terms involving u_{n}^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^{n} on the LHS):

$$
\begin{aligned}
u_{n}^{n+1}\left(1-\Delta t^{2} c_{p} \nabla_{n} \theta^{n} \nabla_{n} \Pi^{n}\right) & =u_{n}^{n}-\Delta t(\ldots)^{n} \cdot \hat{\mathbf{n}}+\Delta t \mathbf{g} \cdot \hat{\mathbf{n}} \\
& -\Delta t c_{p}\left(\theta^{n}-\Delta t\left(\mathbf{u}^{\perp}\right)^{n} \cdot(\nabla \theta)^{n}\right) \nabla_{n} \Pi^{n+1}
\end{aligned}
$$

and write as:

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity equation to get ρ^{n+1} in term of Π^{n+1}

Final Construction of Helmholtz equation

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

Final Construction of Helmholtz equation

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$
\frac{\rho^{n+1}-\rho^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Final Construction of Helmholtz equation

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$
\frac{\rho^{n+1}-\rho^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$
\rho^{n+1}=\Psi \Pi^{n+1}
$$

where $\Psi=\left(\rho^{\ell}\right)^{\frac{2 \kappa-1}{\kappa-1}}\left(R \theta / p_{0}\right)^{\frac{\kappa}{\kappa-1}} \approx\left(p_{0} / R\right)^{0.4} \rho^{0.6} / \theta^{0.4}$

Final Construction of Helmholtz equation

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$
\frac{\rho^{n+1}-\rho^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$
\rho^{n+1}=\Psi \Pi^{n+1}
$$

where $\Psi=\left(\rho^{\ell}\right)^{\frac{2 \kappa-1}{\kappa-1}}\left(R \theta / p_{0}\right)^{\frac{\kappa}{\kappa-1}} \approx\left(p_{0} / R\right)^{0.4} \rho^{0.6} / \theta^{0.4}$

$$
\rightarrow \frac{\Psi \Pi^{n+1}-\Psi \Pi^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Final Construction of Helmholtz equation

$$
u_{n}^{n+1}=G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)
$$

Substitute u_{n}^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$
\frac{\rho^{n+1}-\rho^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$
\rho^{n+1}=\Psi \Pi^{n+1}
$$

where $\Psi=\left(\rho^{\ell}\right)^{\frac{2 \kappa-1}{\kappa-1}}\left(R \theta / p_{0}\right)^{\frac{\kappa}{\kappa-1}} \approx\left(p_{0} / R\right)^{0.4} \rho^{0.6} / \theta^{0.4}$

$$
\rightarrow \frac{\Psi \Pi^{n+1}-\Psi \Pi^{n}}{\Delta t}+(\mathbf{u} \cdot \nabla \rho)^{n}+\rho^{n} \nabla \cdot\left(G\left(u^{\prime}-\Delta t c_{p} \theta^{\prime} \nabla_{n} \Pi^{n+1}\right)\right)=0
$$

Solve to find Π^{n+1} in terms of Π^{n} then back substitute to get ρ^{n+1}, u_{n}^{n+1} and θ^{n+1}.
This is VERY convergent and allows long time steps w.r.t. gravity and acoustic wave speeds ... but what about advection ...

Sub time-steps for advection

- To circumvent time-step restriction due to advection

Sub time-steps for advection

- To circumvent time-step restriction due to advection
- As an alternative to SISL (semi-implicit, semi-Lagrangian)

Sub time-steps for advection

- To circumvent time-step restriction due to advection
- As an alternative to SISL (semi-implicit, semi-Lagrangian)
- Crank-Nicolson for implicit terms (acoustic and gravity waves)

Sub time-steps for advection

- To circumvent time-step restriction due to advection
- As an alternative to SISL (semi-implicit, semi-Lagrangian)
- Crank-Nicolson for implicit terms (acoustic and gravity waves)
- Sub-steps using explicit 3rd order Runge-Kutta for advection

Sub time-steps for advection

- To circumvent time-step restriction due to advection
- As an alternative to SISL (semi-implicit, semi-Lagrangian)
- Crank-Nicolson for implicit terms (acoustic and gravity waves)
- Sub-steps using explicit 3rd order Runge-Kutta for advection
- Combined with Strang carry-over for 2nd-order accuracy

Sub time-steps for advection

- To circumvent time-step restriction due to advection
- As an alternative to SISL (semi-implicit, semi-Lagrangian)
- Crank-Nicolson for implicit terms (acoustic and gravity waves)
- Sub-steps using explicit 3rd order Runge-Kutta for advection
- Combined with Strang carry-over for 2nd-order accuracy
- Linear stability analysis does not reveal any time-step restrictions (not shown)

Hydrostatic Mountain Waves (To test long time-steps)

Linear analytic solution

Implicit gw, $\Delta t=20 \mathrm{~s}, C o=0.2, N \Delta t=0.4$

Explicit gw, $\Delta t=20 \mathrm{~s}, C o=0.2, N \Delta t=0.4$

Implicit gw, $\Delta t=200 \mathrm{~s}, C o=2, N \Delta t=4$

Implicit gw, $\Delta t=100 \mathrm{~s}, C o=1, N \Delta t=2$

Resolution $\div 2, \Delta t=500 \mathrm{~s}, C o=2.5, N \Delta t=10$

Stable at long time-steps but accuracy is lost because θ advection is implicit rather than sub-stepped - needs sorting

Conclusions

- Covariant velocity components over orography
- curl-free pressure gradients
- better stable stratification over orography

Conclusions

- Covariant velocity components over orography
- curl-free pressure gradients
- better stable stratification over orography
- Semi-implicit treatment of acoustic and gravity waves
- without treating z-direction differently
- without an explicitly defined reference profile
- suitable for unstructured in the vertical
- allows time-step independent of stratification

Conclusions

- Covariant velocity components over orography
- curl-free pressure gradients
- better stable stratification over orography
- Semi-implicit treatment of acoustic and gravity waves
- without treating z-direction differently
- without an explicitly defined reference profile
- suitable for unstructured in the vertical
- allows time-step independent of stratification
- Sub time-steps for advection
- allows arbitrary long time-steps for the implicit terms
J.B. Klemp. A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139:2163-2169, 2011.
T. Melvin, M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat. An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the nonhydrostatic vertical slice equations. Quart. J. Roy. Meteor. Soc., 137:799-814, 2010.

