Curl-free pressure gradients over orography in a solution of the fully compressible Euler equations with long time-steps

Hilary Weller¹ Ava Shahrokhi²

Meteorology, University of Reading, UK¹

Engineering, Leeds University, UK²

7 April 2014

Motivation

- Mimetic properties over orography
 - using mimetic horizontal discretisation in the vertical
- Long time-steps
 - suitable for massively parallel
 - suitable for unstructured grids
 - ▶ simpler than SISL (semi-implicit, semi-Lagrangian)

For numerous reasons in meteorology the cells should line up in columns

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

For numerous reasons in meteorology the cells should line up in columns

 \therefore the mesh is non-orthogonal over orography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For numerous reasons in meteorology the cells should line up in columns

 \therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions

ション ふゆ マ キャット しょう くしゃ

For numerous reasons in meteorology the cells should line up in columns

 \therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

:. find $\frac{\partial p}{\partial x}$ co-located with u without knowing p at this altitude (eg Klemp, Zangl)

For numerous reasons in meteorology the cells should line up in columns

 \therefore the mesh is non-orthogonal over orography

Usual approach: orthogonal prognostic velocity variables u, v, w in horizontal and vertical directions

:. find $\frac{\partial p}{\partial x}$ co-located with u without knowing p at this altitude (eg Klemp, Zangl)

 \rightarrow pressure gradients not curl free

Alternative: non-orthogonal prognostic variables (covariant)

Following horizontal discretisations on non-orthogonal grids:

Prognostic variables: $\mathbf{u} \cdot \hat{\mathbf{d}}$

where $\mathbf{d}_f = \mathbf{x}_i - \mathbf{x}_j$

 \rightarrow curl free pressure gradients

 \rightarrow no spurious generation of vorticity

・ロト ・ 日 ・ モー・ モー・ うへぐ

Non-orthogonal prognostic variables (covariant)

Need mass flux $u_n = \mathbf{u} \cdot \hat{\mathbf{n}}$ in continuity equation Requires operator H from space of all u_d s to space of all u_n s.

$$u_n = H u_d$$

(following Thuburn, Dubos, Cotter, 2014)

First reconstruct full velocity at face f from u_{d'} at the surrounding faces, f':

$$\mathbf{u} = T_i^{-1} \sum_{f'} \mathbf{d}_{f'} A_{f'} u_{d'}$$

where
$$T = \sum_{f'} \hat{\mathbf{d}}_{f'} \hat{\mathbf{d}}_{f'}^T A_{f'}$$

 Next take component in direction n and correct the component in direction d so that the result is exact on an orthogonal face:

Least squares fit which reconstructs a
uniform velocity field
$$u_n = \mathbf{u} \cdot \hat{\mathbf{n}} + (u_d - \mathbf{u} \cdot \hat{\mathbf{d}}) (\hat{\mathbf{n}}$$

The resulting H is asymmetric which violates energy conservation

 $\cdot \mathbf{d}$

Results

Resting stratified atmosphere over a steep mountain

- should remain stationary
- ▶ potential temperature contours should remain horizontal

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results

Resting stratified atmosphere over a steep mountain

- should remain stationary
- ▶ potential temperature contours should remain horizontal

 $\partial p/\partial x$ version, implicit gravity waves Δt =100s. Maximum $N\Delta t$ =2

H version, implicit gravity waves $\Delta t = 100$ s. Maximum $N\Delta t = 2$

Maximum Spurious Velocity

▲ロト ▲囲 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Energy Conservation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

For structured, lat-lon grid models, this is usually done by

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- ▶ treating the z coordinate direction differently
- ▶ expressing variables as mean and perturbation quantities

For structured, lat-lon grid models, this is usually done by

- ▶ treating the z coordinate direction differently
- expressing variables as mean and perturbation quantities
 Neither of these are necessary:
 Starting from the Euler equations:
 - $\begin{array}{lll} \mbox{Momentum} & \partial \mathbf{u}/\partial t + \mathbf{u} \cdot \nabla \mathbf{u} + 2\Omega \times \mathbf{u} &= \mathbf{g} c_p \theta \nabla \Pi \\ \mbox{Continuity} & \partial \rho/\partial t + \mathbf{u} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{u} &= 0 \\ \mbox{Potential temperature} & \partial \theta/\partial t + \mathbf{u} \cdot \nabla \theta &= 0 \\ \mbox{State} & \Pi^{\frac{1-\kappa}{\kappa}} &= R\rho\theta/p_0 \\ \mbox{where} & \mbox{potential temperature} & \theta = T \left(p_0/p \right)^{\kappa} \\ \mbox{Exner function of pressure} & \Pi = \left(p/p_0 \right)^{\kappa} \\ \mbox{In order to treat acoustic and gravity wave implicitly, these must ALL} \\ \mbox{be combined to form a linearised equation for } \Pi \end{array}$

Overview:

Overview:

▶ Substitute θ equation into momentum equation

Prognostic variables:

Overview:

- \blacktriangleright Substitute θ equation into momentum equation
- Substitute u_n into continuity equation

Prognostic variables:

Overview:

- \blacktriangleright Substitute θ equation into momentum equation
- Substitute u_n into continuity equation
- ▶ Use equation of state to replace ρ with Π in continuity equation: → Helmholtz equation for Π

Rearrange θ equation to give θ^{n+1} in terms of u_n^{n+1} (1st order in time for brevity):

・ロト ・ 日 ・ モー・ モー・ うへぐ

 $\partial \theta / \partial t + \mathbf{u} \cdot \nabla \theta = 0 \rightarrow \theta^{n+1} = \theta^n - \Delta t \, \mathbf{u} \cdot \nabla \theta^n$

Rearrange θ equation to give θ^{n+1} in terms of u_n^{n+1} (1st order in time for brevity):

$$\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = 0 \quad \rightarrow \qquad \begin{array}{l} \theta^{n+1} &= \theta^n - \Delta t \ \mathbf{u} \cdot \nabla \theta^n \\ &= \theta^n - \Delta t \ (\mathbf{u}^{\perp})^n \cdot \nabla \theta^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n \\ \end{array}$$
where $\mathbf{u}^{\perp} = \mathbf{u} - (\mathbf{u} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \\ \nabla_n \theta = (\nabla \theta) \cdot \hat{\mathbf{n}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rearrange θ equation to give θ^{n+1} in terms of u_n^{n+1} (1st order in time for brevity):

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

where $\mathbf{u}^{\perp} = \mathbf{u} - (\mathbf{u} \cdot \hat{\mathbf{n}}) \, \hat{\mathbf{n}}$ $\nabla_n \theta = (\nabla \theta) \cdot \hat{\mathbf{n}}$

Substitute into the $c_p \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_n^{n+1} in terms of Π^{n+1} :

Rearrange θ equation to give θ^{n+1} in terms of u_n^{n+1} (1st order in time for brevity):

$$\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = 0 \rightarrow \qquad \begin{array}{c} \theta^{n+1} &= \theta^n - \Delta t \ \mathbf{u} \cdot \nabla \theta^n \\ &= \theta^n - \Delta t \ (\mathbf{u}^{\perp})^n \cdot \nabla \theta^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n \end{array}$$

where $\mathbf{u}^{\perp} = \mathbf{u} - (\mathbf{u} \cdot \hat{\mathbf{n}}) \,\hat{\mathbf{n}}$ $\nabla_n \theta = (\nabla \theta) \cdot \hat{\mathbf{n}}$

Substitute into the $c_p \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_n^{n+1} in terms of Π^{n+1} :

$$\frac{u_n^{n+1} - u_n^n}{\Delta t} + (\dots)^n \cdot \hat{\mathbf{n}} = \mathbf{g} \cdot \hat{\mathbf{n}} - c_p \left(\theta^n - \Delta t \ (\mathbf{u}^\perp)^n \cdot (\nabla \theta)^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n \right) \nabla_n \Pi^{n+1}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Rearrange θ equation to give θ^{n+1} in terms of u_n^{n+1} (1st order in time for brevity):

$$\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = 0 \quad \rightarrow \qquad \begin{array}{c} \theta^{n+1} &= \theta^n - \Delta t \ \mathbf{u} \cdot \nabla \theta^n \\ &= \theta^n - \Delta t \ (\mathbf{u}^{\perp})^n \cdot \nabla \theta^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n \end{array}$$

where $\mathbf{u}^{\perp} = \mathbf{u} - (\mathbf{u} \cdot \hat{\mathbf{n}}) \,\hat{\mathbf{n}}$ $\nabla_n \theta = (\nabla \theta) \cdot \hat{\mathbf{n}}$

Substitute into the $c_p \theta \nabla \Pi$ term of the momentum equation and take dot product with $\hat{\mathbf{n}}$ to get u_n^{n+1} in terms of Π^{n+1} :

$$\frac{u_n^{n+1} - u_n^n}{\Delta t} + (\ldots)^n \cdot \hat{\mathbf{n}} = \mathbf{g} \cdot \hat{\mathbf{n}} - c_p \left(\theta^n - \Delta t \ (\mathbf{u}^\perp)^n \cdot (\nabla \theta)^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n \right) \nabla_n \Pi^{n+1}$$

Rearrange to get all terms involving u_n^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^n on the LHS):

1.1

$$\frac{u_n^{n+1} - u_n^n}{\Delta t} + (\dots)^n \cdot \hat{\mathbf{n}} = \mathbf{g} \cdot \hat{\mathbf{n}} - c_p \left(\theta^n - \Delta t \ (\mathbf{u}^{\perp})^n \cdot (\nabla \theta)^n - \Delta t \ u_n^{n+1} \nabla_n \theta^n\right) \nabla_n \Pi^{n+1}$$

Rearrange to get all terms involving u_n^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^n on the LHS):

$$u_n^{n+1} \left(1 - \Delta t^2 c_p \nabla_n \theta^n \nabla_n \Pi^n \right) = u_n^n - \Delta t \left(\dots \right)^n \cdot \hat{\mathbf{n}} + \Delta t \mathbf{g} \cdot \hat{\mathbf{n}} - \Delta t c_p \left(\theta^n - \Delta t \left(\mathbf{u}^\perp \right)^n \cdot \left(\nabla \theta \right)^n \right) \nabla_n \Pi^{n+1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\frac{u_n^{n+1} - u_n^n}{\Delta t} + (\ldots)^n \cdot \hat{\mathbf{n}} = \mathbf{g} \cdot \hat{\mathbf{n}} - c_p \left(\theta^n - \Delta t \left(\mathbf{u}^{\perp}\right)^n \cdot \left(\nabla \theta\right)^n - \Delta t u_n^{n+1} \nabla_n \theta^n\right) \nabla_n \Pi^{n+1}$$

Rearrange to get all terms involving u_n^{n+1} on the LHS (linearise by replacing Π^{n+1} with Π^n on the LHS):

$$u_n^{n+1} \left(1 - \Delta t^2 c_p \nabla_n \theta^n \nabla_n \Pi^n \right) = u_n^n - \Delta t \left(\dots \right)^n \cdot \hat{\mathbf{n}} + \Delta t \mathbf{g} \cdot \hat{\mathbf{n}} - \Delta t c_p \left(\theta^n - \Delta t \left(\mathbf{u}^\perp \right)^n \cdot \left(\nabla \theta \right)^n \right) \nabla_n \Pi^{n+1}$$

and write as:

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

Substitute u_n^{n+1} into the continuity equation to get ρ^{n+1} in term of Π^{n+1}

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Substitute u_n^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

Substitute u_n^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla \rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

Substitute u_n^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla \rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$\rho^{n+1} = \Psi \Pi^{n+1}$$

where $\Psi = \left(\rho^{\ell}\right)^{\frac{2\kappa-1}{\kappa-1}} \left(R\theta/p_0\right)^{\frac{\kappa}{\kappa-1}} \approx \left(p_0/R\right)^{0.4} \rho^{0.6}/\theta^{0.4}$

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

Substitute u_n^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla \rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$\rho^{n+1} = \Psi \Pi^{n+1}$$
where $\Psi = \left(\rho^{\ell}\right)^{\frac{2\kappa-1}{\kappa-1}} \left(R\theta/p_0\right)^{\frac{\kappa}{\kappa-1}} \approx \left(p_0/R\right)^{0.4} \rho^{0.6}/\theta^{0.4}$

$$\rightarrow \frac{\Psi\Pi^{n+1} - \Psi\Pi^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla\rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

$$u_n^{n+1} = G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)$$

Substitute u_n^{n+1} into the continuity to get ρ^{n+1} in term of Π^{n+1}

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla \rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

Use equation of state to replace ρ^{n+1} with Π^{n+1} :

$$\rho^{n+1} = \Psi \Pi^{n+1}$$
where $\Psi = \left(\rho^{\ell}\right)^{\frac{2\kappa-1}{\kappa-1}} \left(R\theta/p_0\right)^{\frac{\kappa}{\kappa-1}} \approx \left(p_0/R\right)^{0.4} \rho^{0.6}/\theta^{0.4}$

$$\rightarrow \frac{\Psi\Pi^{n+1} - \Psi\Pi^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla\rho\right)^n + \rho^n \nabla \cdot \left(G\left(u' - \Delta t c_p \theta' \nabla_n \Pi^{n+1}\right)\right) = 0$$

Solve to find Π^{n+1} in terms of Π^n then back substitute to get ρ^{n+1} , u_n^{n+1} and θ^{n+1} . This is VERY convergent and allows long time steps w.r.t. gravity and acoustic wave speeds ... but what about advection ...

▶ To circumvent time-step restriction due to advection

- ▶ To circumvent time-step restriction due to advection
- ▶ As an alternative to SISL (semi-implicit, semi-Lagrangian)

- ▶ To circumvent time-step restriction due to advection
- ▶ As an alternative to SISL (semi-implicit, semi-Lagrangian)
- ▶ Crank-Nicolson for implicit terms (acoustic and gravity waves)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- ▶ To circumvent time-step restriction due to advection
- ▶ As an alternative to SISL (semi-implicit, semi-Lagrangian)
- ▶ Crank-Nicolson for implicit terms (acoustic and gravity waves)
- ▶ Sub-steps using explicit 3rd order Runge-Kutta for advection

- ▶ To circumvent time-step restriction due to advection
- ▶ As an alternative to SISL (semi-implicit, semi-Lagrangian)
- ▶ Crank-Nicolson for implicit terms (acoustic and gravity waves)

- ▶ Sub-steps using explicit 3rd order Runge-Kutta for advection
- ▶ Combined with Strang carry-over for 2nd-order accuracy

- ▶ To circumvent time-step restriction due to advection
- ▶ As an alternative to SISL (semi-implicit, semi-Lagrangian)
- ▶ Crank-Nicolson for implicit terms (acoustic and gravity waves)
- ▶ Sub-steps using explicit 3rd order Runge-Kutta for advection
- ▶ Combined with Strang carry-over for 2nd-order accuracy
- Linear stability analysis does not reveal any time-step restrictions (not shown)

Hydrostatic Mountain Waves (To test long time-steps)

Stable at long time-steps but accuracy is lost because θ advection is implicit rather than sub-stepped - needs sorting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions

▶ Covariant velocity components over orography

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

- ▶ curl-free pressure gradients
- better stable stratification over orography

Conclusions

Covariant velocity components over orography

- curl-free pressure gradients
- better stable stratification over orography
- ▶ Semi-implicit treatment of acoustic and gravity waves

- without treating z-direction differently
- ▶ without an explicitly defined reference profile
- suitable for unstructured in the vertical
- allows time-step independent of stratification

Conclusions

Covariant velocity components over orography

- curl-free pressure gradients
- better stable stratification over orography
- ▶ Semi-implicit treatment of acoustic and gravity waves
 - without treating z-direction differently
 - ▶ without an explicitly defined reference profile
 - suitable for unstructured in the vertical
 - allows time-step independent of stratification
- ▶ Sub time-steps for advection
 - allows arbitrary long time-steps for the implicit terms

- J.B. Klemp. A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139:2163–2169, 2011.
- T. Melvin, M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat. An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the nonhydrostatic vertical slice equations. *Quart.* J. Roy. Meteor. Soc., 137:799–814, 2010.

・ロト ・ 日 ・ モー・ モー・ うへぐ