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Motivation

I Mimetic properties over orography

I using mimetic horizontal discretisation in the vertical

I Long time-steps

I suitable for massively parallel
I suitable for unstructured grids
I simpler than SISL (semi-implicit, semi-Lagrangian)



Representing Mountains
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For numerous reasons in
meteorology the cells should line
up in columns

∴ the mesh is non-orthogonal
over orography

Usual approach: orthogonal
prognostic velocity variables u, v,
w in horizontal and vertical
directions

∴ find ∂p
∂x co-located with u

without knowing p at this
altitude (eg Klemp, Zangl)

→ pressure gradients not curl free
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Alternative: non-orthogonal prognostic variables
(covariant)

u · d

u · d

d

d

n

Following horizontal discretisa-
tions on non-orthogonal grids:

Prognostic variables: u · d̂

where df = xi − xj

→ curl free pressure gradients

→ no spurious generation of
vorticity



Non-orthogonal prognostic variables (covariant)

Need mass flux un = u · n̂
in continuity equation
Requires operator H from space of all
uds to space of all uns.

un = Hud

(following Thuburn, Dubos, Cotter, 2014)

I First reconstruct full velocity at face f
from ud′ at the surrounding faces, f ′:

u = T−1
i

∑
f ′

df ′Af ′ud′

where T =
∑
f ′

d̂f ′ d̂
T
f ′Af ′

Least squares fit which reconstructs a
uniform velocity field

un = u · n̂

ud = u · d̂

I Next take component in
direction n and correct the
component in direction d so
that the result is exact on
an orthogonal face:

un = u·n̂+
(
ud − u · d̂

)(
n̂ · d̂

)
The resulting H is asymmetric which violates energy conservation



Results

Resting stratified atmosphere over a steep mountain

I should remain stationary

I potential temperature contours should remain horizontal

∂p/∂x version, implicit gravity waves H version, implicit gravity waves
∆t=100s. Maximum N∆t=2 ∆t=100s. Maximum N∆t=2
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Maximum Spurious Velocity
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Energy Conservation
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Gravity-waves over orography ∆t=40s, u∆t/∆x ≈ 1, w every .05m/s

∂p/∂x version H version
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Met Office [Melvin et al., 2010] Linear analytic solution



Semi-implicit acoustic and gravity waves

For structured, lat-lon grid models, this is usually done by

I treating the z coordinate direction differently

I expressing variables as mean and perturbation quantities

Neither of these are necessary:
Starting from the Euler equations:

Momentum ∂u/∂t+ u · ∇u + 2Ω× u = g − cpθ∇Π
Continuity ∂ρ/∂t+ u · ∇ρ+ ρ∇ · u = 0
Potential temperature ∂θ/∂t+ u · ∇θ = 0

State Π
1−κ
κ = Rρθ/p0

where potential temperature θ = T (p0/p)
κ

Exner function of pressure Π = (p/p0)
κ

In order to treat acoustic and gravity wave implicitly, these must ALL
be combined to form a linearised equation for Π
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Semi-implicit acoustic and gravity waves

Prognostic variables:
un = u · n̂ velocity normal to each cell face

θ at cell centre
Π at cell centre
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Overview:

I Substitute θ equation into momentum equation

I Substitute un into continuity equation

I Use equation of state to replace ρ with Π in continuity equation:
→ Helmholtz equation for Π
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Substitute θ into momentum equation

Rearrange θ equation to give θn+1 in terms of un+1
n (1st order in time

for brevity):

∂θ/∂t+ u · ∇θ = 0 → θn+1 = θn −∆t u · ∇θn

= θn −∆t (u⊥)n · ∇θn −∆t un+1
n ∇nθn

where u⊥ = u− (u · n̂) n̂
∇nθ = (∇θ) · n̂

Substitute into the cpθ∇Π term of the momentum equation and take
dot product with n̂ to get un+1

n in terms of Πn+1:

un+1
n − unn

∆t
+ (. . .)

n · n̂ = g · n̂

− cp
(
θn −∆t (u⊥)n · (∇θ)n −∆t un+1

n ∇nθn
)
∇nΠn+1

Rearrange to get all terms involving un+1
n on the LHS (linearise by

replacing Πn+1 with Πn on the LHS):
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Final Construction of Helmholtz equation

un+1
n = G

(
u′ −∆tcpθ

′∇nΠn+1
)

Substitute un+1
n into the continuity to get ρn+1 in term of Πn+1

ρn+1 − ρn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Use equation of state to replace ρn+1 with Πn+1:

ρn+1 = Ψ Πn+1

where Ψ =
(
ρ`
) 2κ−1

κ−1 (Rθ/p0)
κ

κ−1 ≈ (p0/R)
0.4
ρ0.6/θ0.4

→ ΨΠn+1 −ΨΠn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Solve to find Πn+1 in terms of Πn then back substitute to get ρn+1,
un+1
n and θn+1.

This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...



Final Construction of Helmholtz equation

un+1
n = G

(
u′ −∆tcpθ

′∇nΠn+1
)

Substitute un+1
n into the continuity to get ρn+1 in term of Πn+1

ρn+1 − ρn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Use equation of state to replace ρn+1 with Πn+1:

ρn+1 = Ψ Πn+1

where Ψ =
(
ρ`
) 2κ−1

κ−1 (Rθ/p0)
κ

κ−1 ≈ (p0/R)
0.4
ρ0.6/θ0.4

→ ΨΠn+1 −ΨΠn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Solve to find Πn+1 in terms of Πn then back substitute to get ρn+1,
un+1
n and θn+1.

This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...



Final Construction of Helmholtz equation

un+1
n = G

(
u′ −∆tcpθ

′∇nΠn+1
)

Substitute un+1
n into the continuity to get ρn+1 in term of Πn+1

ρn+1 − ρn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Use equation of state to replace ρn+1 with Πn+1:

ρn+1 = Ψ Πn+1

where Ψ =
(
ρ`
) 2κ−1

κ−1 (Rθ/p0)
κ

κ−1 ≈ (p0/R)
0.4
ρ0.6/θ0.4

→ ΨΠn+1 −ΨΠn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Solve to find Πn+1 in terms of Πn then back substitute to get ρn+1,
un+1
n and θn+1.

This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...



Final Construction of Helmholtz equation

un+1
n = G

(
u′ −∆tcpθ

′∇nΠn+1
)

Substitute un+1
n into the continuity to get ρn+1 in term of Πn+1

ρn+1 − ρn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Use equation of state to replace ρn+1 with Πn+1:

ρn+1 = Ψ Πn+1

where Ψ =
(
ρ`
) 2κ−1

κ−1 (Rθ/p0)
κ

κ−1 ≈ (p0/R)
0.4
ρ0.6/θ0.4

→ ΨΠn+1 −ΨΠn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Solve to find Πn+1 in terms of Πn then back substitute to get ρn+1,
un+1
n and θn+1.

This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...



Final Construction of Helmholtz equation

un+1
n = G

(
u′ −∆tcpθ

′∇nΠn+1
)

Substitute un+1
n into the continuity to get ρn+1 in term of Πn+1

ρn+1 − ρn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Use equation of state to replace ρn+1 with Πn+1:

ρn+1 = Ψ Πn+1

where Ψ =
(
ρ`
) 2κ−1

κ−1 (Rθ/p0)
κ

κ−1 ≈ (p0/R)
0.4
ρ0.6/θ0.4

→ ΨΠn+1 −ΨΠn

∆t
+ (u · ∇ρ)

n
+ ρn∇ ·

(
G
(
u′ −∆tcpθ

′∇nΠn+1
))

= 0

Solve to find Πn+1 in terms of Πn then back substitute to get ρn+1,
un+1
n and θn+1.

This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...



Sub time-steps for advection

I To circumvent time-step restriction due to advection

I As an alternative to SISL (semi-implicit, semi-Lagrangian)

I Crank-Nicolson for implicit terms (acoustic and gravity waves)

I Sub-steps using explicit 3rd order Runge-Kutta for advection

I Combined with Strang carry-over for 2nd-order accuracy

I Linear stability analysis does not reveal any time-step restrictions
(not shown)
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Hydrostatic Mountain Waves (To test long time-steps)

Linear analytic solution Implicit gw, ∆t = 20s, Co = 0.2, N∆t = 0.4
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Explicit gw, ∆t = 20s, Co = 0.2, N∆t = 0.4 Implicit gw, ∆t = 100s, Co = 1, N∆t = 2
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Implicit gw, ∆t = 200s, Co = 2, N∆t = 4 Resolution÷2, ∆t = 500s, Co = 2.5, N∆t = 10
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Stable at long time-steps but accuracy is lost because θ advection is
implicit rather than sub-stepped - needs sorting



Conclusions

I Covariant velocity components over orography

I curl-free pressure gradients
I better stable stratification over orography

I Semi-implicit treatment of acoustic and gravity waves

I without treating z-direction differently
I without an explicitly defined reference profile
I suitable for unstructured in the vertical
I allows time-step independent of stratification

I Sub time-steps for advection

I allows arbitrary long time-steps for the implicit terms



Conclusions

I Covariant velocity components over orography

I curl-free pressure gradients
I better stable stratification over orography

I Semi-implicit treatment of acoustic and gravity waves

I without treating z-direction differently
I without an explicitly defined reference profile
I suitable for unstructured in the vertical
I allows time-step independent of stratification

I Sub time-steps for advection

I allows arbitrary long time-steps for the implicit terms



Conclusions

I Covariant velocity components over orography

I curl-free pressure gradients
I better stable stratification over orography

I Semi-implicit treatment of acoustic and gravity waves

I without treating z-direction differently
I without an explicitly defined reference profile
I suitable for unstructured in the vertical
I allows time-step independent of stratification

I Sub time-steps for advection

I allows arbitrary long time-steps for the implicit terms



J.B. Klemp. A terrain-following coordinate with smoothed coordinate
surfaces. Mon. Wea. Rev., 139:2163–2169, 2011.

T. Melvin, M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat. An
inherently mass-conserving semi-implicit semi-Lagrangian
discretisation of the nonhydrostatic vertical slice equations. Quart.
J. Roy. Meteor. Soc., 137:799–814, 2010.




