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Outline 

o  A brief introduction to parallel-in-time 

o  Describe a locally asymptotic slow solution 

o  Show some results from the shallow water equations 

o  Summarize and lead into highly parallel linear
 propagators 



The early days of computational science 

Slow Dynamics 
L.F. Richardson in (1922) -  using ‘computers’ (us) 

Charney (1948) and Charney (1950)  - derived ‘slow’ or
 Quasi-Geostrophic (QG) equations (important
 conceptual model) 

Charney and Phillips (1953) – the first realistic
 numerical weather prediction using the QG eqs 

L.F. Richardson 

J. Charney J. von Neumann 

And then our community 
proceeded to not use QG for 
weather prediction. 

We have been dealing with 
strategies for overcoming or 
managing small time steps 
ever since. 



Characteristics of emerging computer architectures 

o  Unprecedented parallelism: Current High Performance computers
 can scale up to 250,000 processors. Efficient use of new
 architectures will require we know how to scale up to 1 Billion
 parallel processors. 

o  Processors speeds will not be significantly faster than current
 processors. 

o  Memory per processor limited. 

o  We will have a greater need to have fault-tolerant algorithms 

o  We will have to understand asynchronous computing 



Algorithms and new computing architectures 

o  Fixed grid on N processors 

  For a fixed grid you may have an optimal distribution of the grid on N
 processors, then the only dimension left available for parallelization is time. 

o  Grid refinement (we’ll still have to wait for each time step) 
 Because current algorithms need to reduce their maximum time step as
 the number of grid points increases, these new machines may not
 significantly reduce wall clock time . You may be able to have a higher
 resolution grid but you will still wait a longer time for each time step to
 complete.  

 From a wall-clock-time point of view, current models may appear to
 dissipate into the machine. 

See Jean Côté’s talk from PDEs on the Sphere Cambridge at 
http://www.newton.ac.uk/programmes/AMM/seminars/
2012092814201.html 



Graphical representation of the parallel-in-time algorithm 

Nievergelt, 1964 
Lions, Maday, Turinici, 2001  

Successful for 
dissipative stiffness 



Oscillatory Stiffness in Parareal 



The roots of the locally asymptotic slow/coarse solution 

Slow Manifolds (nonlinear normal mode initialization, center
 manifolds, dynamical systems, etc) 

Machanauer (1977), Baer (1877), Tribbia ( 1979), etc 

Leith, Nonlinear Normal Mode Initialization and Quasi
-Geostrophic Theory (1980) 

Lorenz, On the Existence of a Slow Manifold (1986) 

Lorenz and Krishnamurthy, On the non-Existence of the Slow
 Manifold (1987) 

Lorenz, The Slow Manifold – what is it? (1991) 

  (….so far the answer is ‘it is a fuzzy manifold’.) 

Ed Lorenz Chuck Leith 



PDEs with oscillatory stiffness – the equations of climate 
and weather 

•  The          operator results in temporal oscillations on a time 
scale of  

•  Standard numerical time-stepping methods must use time 
steps  

Embid and Majda, 1996, 1998, Majda and Embid, 1998, Schochet, 1994,
 Klainerman and Majda 1981, Wingate,  Embid, Holmes-Cerfon, Taylor, 2011 



One way to view the problem (also used for exponential
 integrators) 

v varies slower than u, but v still has some oscillations 



An asymptotic method-of-multiple scales in time (another
 way to derive Quasi Geostrophy is a singular
 perturbation in time): 

Asymptotic solution looks like: 

Embid and Majda, 1996, 1998, Majda and Embid, 1998, Schochet, 1994,
 Klainerman and Majda 1981, Wingate,  Embid,, Cerfon-Holme Taylor,
 2011 



Over a few oscillations we approximate the time integral
 using HMM: 



Test of the method on the shallow water equations 



Example of the solution in time: epsilon=.01, Delta T = .3 

�T



Relative L∞  errors for epsilon=10^{-1} , using the asymptotic
 based parallel-in-time integrator and taking Delta T=3/10  and
 Delta t=1/500 . Each graph is for fixed a iteration k  (1,3,5 ),
 and the errors are plotted as a function of the time n Delta T ,
 n=1..N . The errors are shown on a log10  scale. 



Maximum relative  error versus number of iterations 

APAR: 5 
Parareal: 5 

APAR: 13 
Parareal: 4 

APAR : 100 
Parareal: 10 

✏ = 10�2

✏ = 10�1
✏ = 1



Large time step dependence on epsilon 



Summary (Haut & Wingate, SIAM J. Sci Comp 2014) 

o  Proposed Locally Asymptotic slow integrator for the parareal algorithm.
 Has it’s theoretical roots in the ‘slow manifold’.  

o  Separation of time scales not required for it to work, but it means you’ll get
 a parallel-speed-up-in-time, allowing you to use things like asynchronous
 computing, fault tolerance, and large time steps. 

o  Initial results from the shallow water equations are promising. A factor of
 10 over the best parareal methods available and a factor of 100 over
 standard methods for epsilon=10-2 

o  We can double the resolution and keep the same coarse time step. 

o  We haven’t even tried exploiting this parallelism on GPUs or getting more
 speed out of an asynchronous algorithm. 

o  There is a crucial step to introducing even more parallelism is the 
 representation of the linear propagators. 



Pseudocode 



Solve for the fast leading order solutions 

Solve with Duhammel’s formula and ensure the u1 solution is
 not large by using the concept of fast wave averaging. 

The order 1 solution is a function of the leading order
 solution: 

Where      solves: 



Boussinesq equations - nonlocal form in a Hilbert Space 

Hilbert Space X of vector fields u in L  that are
 divergence free and equipped with the L  norm. 
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