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FIRST THEME: Equatorial Trapping is
Controlled by BOTH Lamb’s Parameter and

Zonal Wavenumber

ε ≡ 4Ωa2

gH
[LAMB’S PARAMETER]

Ω = 2π/84, 600 s, a = earth’s radius

g = 9.8m/s H = equivalent depth

s ≡ LONGITUDINAL WAVENUMBER,

an INTEGER
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Equatorial Beta-Plane: Asymptotic
Approximation by Hermite Functions

• Orthodoxy: vn ∼ ψn(ε1/4µ),
ψn(y) = exp(−[1/2]y2)Hn(y)

• Boyd (J. Atmos. Sci., 1985) argued that for
Rossby waves,

ε → ε+ s
2

• Boyd & Zhou (J. Atmos. Sci., 2008) extended
to Kelvin waves

• Argument applies to SPHERICAL HARMON-
ICS & PROLATE SPHEROIDAL FUNCTIONS as
well as HOUGH FUNCTIONS
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Prolate Spheroidal Illustration

d2ψ

dφ2
−dψ
dφ

+
{

χn −
s2

cos2(φ)
− ε sin(φ)2

}

ψ = 0

⇓ cos(φ)→ 1, sin(φ)→ φ ⇓

d2v

dφ2
+
{

χn − s2 − εφ2

}

v = 0

1/ cos(φ)2 = 1/
{

1− sin2(φ)
}

= 1+ sin2(φ)+O(sin4(φ)

= 1+φ2 +O(φ4)

− s2

cos2(φ)
− ε sin(φ)2 (1)

⇒ −s2 − (ε+ s2) sin(φ)2

Barotropic (ε = 0) Kelvin Waves

High zonal wavenumber Kelvin are equatorial
modes even for ε = 0
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 Barotropic Kelvin, ε=0,  s=20
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Boyd-Zhou Kelvin approximation is

φ ≈ (1−µ2)s/2 exp((s/2)µ2)×exp(−(1/2)
√

ε+ s2µ2)

(µ = sin(latitude))
Kelvin & approx. are solid black [graphically

indistinguishable]
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Uniform Validity

• New approximation is uniformly valid for
√

s2 + ε >> 1

(shaded in figure)

• Though not strictly valid when both s and ε
are O(1), it is not a bad approximations
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SECOND THEME: NONLINEAR KELVIN
DYNAMICS
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CCB Scenario: Cnoidal/Corner/Breaking
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Definition 1 (Corner Wave) A corner wave is a
steadily traveling nonlinear wave in which the
wave height function u(x−ct) has a maximum
which is a slope discontinuity.

Table 1: Examples of Systems with Corner Waves and the CCB Scenario
Eq. or Wave Name Equations

Non-equatorial

Equatorial Waves Kt +KKx = γ
{

Y(t)eix + Y(t)e−ix
}

;

Barotropic Mode Yt = −γK̂(x = 1, t)

Equatorial Waves 3 coupled PDES in (x, t)
Baroclinic Mode
Resonant Triads, ut + uux = 2Re (ikab exp(−ikx));

One Nondispersive at = −iωabûk; bt = −iωbaûk
Equatorial Kelvin 4 coupled PDEs in x, t
(4-mode Model)

Equatorial Kelvin 3 coupled PDEs in x,y, t
(Shallow Water) (Shallow Water Eqs.)

Non-equatorial

Surface Irrotational Euler equations in x, z
Water Waves

Boundary Waves Two-space-dimensional Euler equations (x,y)
on Vortex Patches

Camassa-Holm ut −uxxt + (2κ + 3u− 2uxx)ux −uuxxx = 0

Ostrovsky-Hunter (ut +uux)x = u

Gabov/ (ut +uux)x =
∫

2π
0 cos(x −y)u(y)dy

Shefter-Rosales

Whitham (ut +uux)x = pb
2×

{

u−
∫ 2π

0

b cosh(b{|X−y|−π })
2 sinh(bπ) u(y)dy

}
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Corner waves for different values of Lamb’s
paramter ε

CORNER WAVE is a POINT SINGULARITY
NOT a CREASE
NOT a CONE
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Kelvin front CURVES because of resonance
with gravity waves

φ,  t=6.6667
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HOUGH POINT CLOUDS INTO POLYNOMIALS

Hough’ spherical harmonic Galerkin algorithm,
with Longuet–Higgin’s improvements, is very
fast and spectrally accurate.

Mode classification is NOT a SLAM DUNK
Galerkin method generates POINT CLOUD: eigen-

values at discrete ε.
Desired: CONTINUOUS BRANCHES
Other complications:
Kelvin mode ⇒ GRAVITY WAVE as ε → 0
Yanai mode is “MIXED ROSSBY-GRAVITY"
Number of interior zeros may change with ε
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Making Friends with Special Functions

CONCEPTUAL, QUALITATIVE:

Never-Out-of-Date Paradigms: Theorems,
Asymptotics & Graphs

NUMERICAL:

Ancient Paradigm: Tables

Newer Paradigm: Perturbation Series & Cheby-
shev Series

Emerging Paradigm: Matlab Code

Spherical harmonic Galerkin discretizations
are tridiagonal (ε is eigenvalue) or otherwise
very sparse. Power method allows very fast
computation of a chosen mode for arbitrary
parameter values without the need to compute
all other modes if a Never-Failing-Initialization
available.
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Alternatives to Never-Failing-Initialization

Continuation, Davidenko Equation, etc.,
WORK but MANY POTENTIAL PROBLEMS
Discussed in many references including:
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Never-Failing-Initialization: Seven Series
Options

small ε large ε

Hermite

functions

spherical

harmonics

Pade from

small ε
Pade from

large ε

TWO-POINT

PADE

Rational Chebyshev (TL series)

for each s

lall ε

Double Rational Chebyshev 

(ε, s)
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Two-Point Padé Approximants

Example: Kelvin wave

The existence of such approximations sug-
gests a unity of structure and identity in the
Kelvin mode over all of ε ∈ [0,∞].

Linear Polynomial/Linear Polynomial in
√
εMatches

(i) ε = 0 limit (ii) two terms in 1/
√
ε:

c
two−point

[1/1] =





√

s + 1

s
+ 4 ε1/2

√

s + 1

s
− 4ε1/2







1+ 4 ε1/2

√

s + 1

s
− 4ε1/2





−1

(2)

The next Kelvin approximation c
two−point

[2/2] matches
the first three terms of the large-ε expansion
and two terms of the small-ε series [not shown]

The maximum relative error of the two-point

Padé c
two−point

[2/2] for Kelvin mode is only 0.0184
over all of ε ∈ [0,∞].
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Figure 1: Errors in the small-ε and large-ε Padé [3/3] approximations and also the quadratic-over-

quadratic c
two−point

[2/2] two-point rational approximation that for the phase speed for the Kelvin
mode for s = 1.
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Deriving Asymptotic Series by Galerkin
Methods & Computer Algebra

• Galerkin Matrix Elements by Exact, Analyti-
cal Integration

Hermite function basis [large ε]
spherical harmonic basis [Small ε]

• Expand in ε or 1/
√
ε & match powers

• Solve order-by-order in exact rational arith-
metic

Low order small ε expansions by Dikii & Golit-
syn and by Longuet-Higgins circa 1965

LH gave limited results for large ε
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Exponential Smallness & Hermite Functions

[Define µ = sin(latitude)]
Key step in large ε, Hermite function asymp-

totics is

µ → y/
√√
ε

Paradox: y ∈ [−ε−1/4, ε−1/4]
but Galerkin integrals are on y ∈ [−∞,∞]

• error is EXPONENTIALLY SMALL

• exp(−1/
√
ε) is INVISIBLE to ε-power series

• Coefficients of asymptotic series are EXACT
& RATIONAL

• Series DIVERGE
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Reviews on Exponential Smallness

"The Devil’s Invention: Asymptotics, Superasymp-
totics and Hyperasymptotics", Acta Applican-
dae, 56, 1-98 (1999).

" Hyperasymptotics and the Linear Boundary
Layer Problem: Why Asymptotic Series Diverge,
SIAM Rev. , 47, no. 3, 553-575 (2005)
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SUMMARY

• Equatorial trapping depends on s2 + ε
[zonal wavenumber (squared) plus
Lamb’s parameter]

• Kelvin Cnoidal Wave/Corner Wave/Breaking:

Small amplitude Kelvin:
cnoidal waves & solitons

Largest non-breaking Kelvin wave is
a corner wave

Medium & large amplitude Kelvin:
frontogenesis and breaking

• Hough point clouds can be connected by per-
turbation series and two-point Padé approx-
imations

In preparation: “Hough Functions: Revisit-
ing Longuet-Higgins’ Masterwork Half a Cen-
tury Later"
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