

The Tangent Linear Normal Mode Constraint in GSI:

Applications in the NCEP GFS/GDAS Hybrid EnVar system and Future Developments

Daryl Kleist¹

David Parrish², Catherine Thomas^{1,2}

¹Univ. of Maryland-College Park, Dept. of Atmos. & Oceanic Science ²NOAA/NCEP/Environmental Modeling Center

> 2015 MODES Workshop 26-28 August 2015 NCAR, Mesa Lab, Boulder, CO

Some History

- GSI was effort started in 2000s
 - Merge regional (Eta) and global (SSI) DA systems, collaborate with JCSDA (GMAO)
 - Grid-space, modified B, no balancing
- However, initial results with GFS were discouraging
 - In order to make GSI operational for GFS/GDAS, needed to pursue improved B and/or balance operators
- Initial attempts were weak constraint formulations
 - First, based on incremental tendencies
 - Then, normal modes, eventually yielding the TLNMC....
- GSI finally implemented in 2007

SHIVERSIZ

Zonal-average surface pressure tendency for background (green), unconstrained GSI analysis (red), and GSI analysis with TLNMC (purple).

- Noise in the background (first guess/model forecast)
 - Digital filters
 - Initialization (Nonlinear Normal Mode Initialization)
 - Analysis draws to data, initialization pushes away from observations
- Noise in the analysis increment
 - Improved multivariate variable definition
 - Dynamic weak constraint
 - This was our first attempt but:
 - Poor convergence / ill-conditioned
 - Scale selectivity was an issue
 - Significant degradation in analysis fits to the data, similar to full field initialization
 - Incremental normal mode initialization

Tangent Linear Normal Mode Constraint Kleist et al. (2009)

$$J(\mathbf{x}_{c}^{'}) = \frac{1}{2} (\mathbf{x}_{c}^{'})^{T} \mathbf{C}^{-T} \mathbf{B}^{-1} \mathbf{C}^{-1} (\mathbf{x}_{c}^{'}) + \frac{1}{2} (\mathbf{y}_{o}^{'} - \mathbf{H} \mathbf{x}_{c}^{'})^{T} \mathbf{R}^{-1} (\mathbf{y}_{o}^{'} - \mathbf{H} \mathbf{x}_{c}^{'}) + J_{c}^{'}$$
$$\mathbf{x}_{c}^{'} = \mathbf{C} \mathbf{x}^{'}$$

- analysis state vector after incremental NMI
 - C = Correction from incremental normal mode initialization (NMI)
 - represents correction to analysis increment that filters out the unwanted projection onto fast modes
- No change necessary for **B** in this formulation
- Based on:
 - Temperton, C., 1989: "Implicit Normal Mode Initialization for Spectral Models", MWR, vol 117, 436-451.
- * Similar idea developed and pursued independently by Fillion et al. (2007) 5

- Practical Considerations:
 - **C** is operating on **x**' only, and is the tangent linear of NNMI operator
 - Only need one iteration in practice for good results
 - Adjoint of each procedure needed as part of minimization/variational procedure

- Performs correction to *increment* to reduce gravity mode tendencies
- Applied during minimization to *increment*, not as post-processing of analysis fields
- Little impact on speed of minimization algorithm
- **CBC**^T becomes effective background error covariances for balanced increment
 - Not necessary to change variable definition/B (unless desired)
 - Adds implicit flow dependence
- Requires time tendencies of increment
 - Implemented dry, adiabatic, generalized coordinate tendency model (TL and AD)

Vertical Modes

- Global mean temperature and pressure for each level used as reference
- First 8 vertical modes are used in deriving incremental correction in global implementation

Single observation test (T observation)

Isotropic

- Magnitude of TLNMC correction is small
- TLNMC adds flow dependence • even when using same isotropic **B**

No Constraint

500 hPa temperature increment (right) and analysis difference (left, along with background geopotential height) valid⁹ at 12Z 09 October 2007 for a single 500 hPa temperature observation (1K O-F and observation error)

Single observation test (T observation)

Cross section of zonal wind increment (and analysis difference) valid at 12Z 09 October 2007 for a single 500 hPa *temperature* observation (1K O-F and 10 observation error)

Surface Pressure Tendency Revisited

ND ATMOSE

NOAA

S DEPARTMENT OF COT

NATIONAL

Y.S.

Zonal-average surface pressure tendency for background (green), unconstrained GSI analysis (red), and GSI analysis with TLNMC (purple)

- Compute RMS sum of incremental tendencies in spectral space (for vertical modes kept in TLNMC) for final analysis increment
 - Unfiltered: S_{uf} (all) and S_{uf_g} (projected onto gravity modes)
 - Filtered: S_f (all) and S_{f_g} (projected onto gravity modes)
 - Normalized Ratio:
 - $R_f = S_{f_g} / (S_f S_{f_g})$
 - $R_{uf} = S_{uf_g} / (S_{uf} S_{uf_g})$

	S _{uf}	S_{uf_g}	R _{uf}	$\mathbf{S}_{\mathbf{f}}$	$\mathbf{S}_{\mathrm{f}_\mathrm{g}}$	R _f		
NoJC	1.45x10 ⁻⁷	1.34x10 ⁻⁷	12.03	1.41x10 ⁻⁷	1.31x10 ⁻⁷	12.96		
TLNMC	2.04x10 ⁻⁸	6.02x10 ⁻⁹	0.419	1.70x10 ⁻⁸	3.85x10 ⁻⁹	0.291		

Fits of Surface Pressure Data in Parallel Tests GSI 3DVAR with TLNMC implement 1 May 2007

Hybrid EnVar

Lorenc (2003), Buehner (2005), Wang et al.(2007)

$$J_{\text{Hyb}}(\mathbf{x}_{c}, \alpha) = \beta_{c} \frac{1}{2} (\mathbf{x}_{f})^{\mathsf{T}} \mathbf{B}^{\mathsf{f}}(\mathbf{x}_{f}) + \beta_{e} \frac{1}{2} (\alpha)^{\mathsf{T}} \mathbf{L}^{-1}(\alpha) + \frac{1}{2} (\mathbf{y}_{o}^{\mathsf{T}} - \mathbf{H} \mathbf{x}_{t}^{\mathsf{T}})^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y}_{o}^{\mathsf{T}} - \mathbf{H} \mathbf{x}_{t}^{\mathsf{T}})$$
$$\mathbf{x}_{t}^{\mathsf{T}} = \mathbf{x}_{f}^{\mathsf{T}} + \sum_{m=1}^{M} (\alpha^{m} \circ \mathbf{x}_{e}^{m})$$

 $\beta_{\rm f}$ & $\beta_{\rm e}:$ weighting coefficients for clim. (var) and ensemble covariance respectively

x_t': (total increment) sum of increment from fixed/static B (x_f') and ensemble
B

 \boldsymbol{a}_k : extended control variable; \boldsymbol{x}_e^m : ensemble perturbations

- analogous to the weights in the LETKF formulation

$$(\mathbf{w}_{k,m} = (\mathbf{Y}_{k,m}^{\mathrm{b}})^{\mathrm{T}} [\mathbf{Y}_{k,m}^{\mathrm{b}} (\mathbf{Y}_{k,m}^{\mathrm{b}})^{\mathrm{T}} + \mathbf{R}]^{-1} \mathbf{d}_{k})$$

L: correlation matrix [effectively the localization of ensemble perturbations]

- Apply to static contribution only
 - Non-filtering of ensemble contribution

$$\mathbf{x}'_{t} = \mathbf{C}\mathbf{x}'_{f} + \sum_{m=1}^{M} (\alpha^{m} \circ \mathbf{x}_{e}^{m})$$

- Apply to total increment * (method of choice)
 - Helps mitigate imbalance/noise associated with static B (as before) and ensemble contribution (localization, etc.)

$$\mathbf{x}'_{t} = \mathbf{C}[\mathbf{x}'_{f} + \sum_{m=1}^{M} (\alpha^{m} \circ \mathbf{x}_{e}^{m})]$$

Impact of TLNMC in 3D Hybrid

Wang et al. (2013)

Hybrid 3D EnVar *with TLNMC* Implemented in May 2012

Stand AND AIMOSPHERIC

OFDARTMENT OF COMMERC

NATIONAL

U.S.

4D Ensemble Var (Liu et al, 2008)

GSI - Hybrid 4D-EnVar

Wang and Lei (2014); Kleist and Ide (2015)

The Hybrid EnVar cost function can be easily extended to 4D and include a static contribution (ignore preconditioning)

$$J(\mathbf{x}_{f}', \alpha) = \beta_{f} \frac{1}{2} (\mathbf{x}')^{\mathsf{T}} \mathbf{B}_{f}^{-1} (\mathbf{x}') + \beta_{e} \frac{1}{2} \alpha^{\mathsf{T}} \mathbf{L}^{-1} \alpha + \frac{1}{2} \sum_{k=1}^{K} (\mathbf{y}_{k}' - \mathbf{H}_{k} \mathbf{x}_{k}')^{\mathsf{T}} \mathbf{R}_{k}^{-1} (\mathbf{y}_{k}' - \mathbf{H}_{k} \mathbf{x}_{k}')$$

Jo term divided into observation "bins" as in 4DVAR

Where the 4D increment is prescribed through linear combinations of the 4D ensemble perturbations plus static contribution, i.e. it is not itself a model trajectory

$$\mathbf{x}_{k}' = \mathbf{x}_{c}' + \sum_{m=1}^{M} (\alpha^{m} \circ (\mathbf{x}_{e})_{k}^{m})$$

Here, static contribution is time invariant. No TL/AD in Jo term (M and M^T) 18

- Tangent Linear Normal Mode Constraint
 - Based on past experience and tests with 3D hybrid, default configuration includes TLNMC over all time levels (quite expensive)

$$\mathbf{x}_{k}^{\prime} = \mathbf{C}_{k} \left[\mathbf{x}_{f}^{\prime} + \sum_{n=1}^{N} \left(\alpha^{n} \circ \left(\mathbf{x}_{e} \right)_{k}^{n} \right) \right]$$

- Weak Constraint "Digital Filter"
 - Construct filtered/initialized state as weighted sum of 4D states

$$J_{dfi} = \chi \left\langle \mathbf{x}_m - \mathbf{x}_m^{i}, \mathbf{x}_m - \mathbf{x}_m^{i} \right\rangle$$
$$\mathbf{x}_m^{i} = \sum_{k=1}^{K} \mathbf{h}_{k-m} \mathbf{x}_k^{u}$$

- Combination of the two
 - Apply TLNMC to center of assimilation window only in combination with JcDFI (Cost effective alternative?)

-31

Constraint impact (single case)

0h

Analysis Relative Time

4DENVAR+JCDFI 4DENVAR+COMB

+3h

- Impact on tendencies
 - Dashed: Total tendencies
 - Solid: Gravity mode tendencies
 - All constraints reduce incremental tendencies

- Impact on ratio of gravity mode/total tendencies
 - JcDFI increases ratio of gravity mode to total tendencies
 - TLNMC most effective (but most expensive)
 - Combined constraint potential (cost effective alternative)

Analysis Error (cycled OSSE)

- Time mean (August) change in analysis error (total energy) *relative* to 4D hybrid EnVar experiment that utilized no constraints at all
 - TLNMC universally better
 - Combined constraint mixed
 - JcDFI increases analysis error

TLNMC impact in 4D EnVar (real obs) Wang and Lei (2014)

TC Track Errors

AC

THOLE AND ATMOSPHERIC R THOLE IS THE ARTMENT OF COMMENT

Impact in 4D hybrid with IAU Courtesy: Lili Lei

23

850hPa .

1000hPa

. .

Hybrid 4D EnVar *with TLNMC* To be implemented in early 2016

		j í	N. American				N. Hemisphere					S. Hemisphere						Tropics							
	Ϋ́		Day 1	Day 3	Day 5	Day 6	Day 8 Day 1	Day 1	Day 3	3Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10
Anomaly Correlation	3	250hPa				- 275	8 00 8 00 					- <u>81</u> -							250	6 0.2		221 -		2 .0.2	
	Theorem	500hPa																							
	rieignis	700hPa											l. l.							0					
		1000hPa																							
	0	250hPa																						1	
	Vector Wind	500hPa																							
		850hPa																		0					
		250hPa																							
	Temp	500hPa																							
	14	850hPa																-							
	MSLP	MSL																		1					
		10hPa		-				V	V					V	V	V	V								
		20hPa	5	12. 6					V	10. 0							12			V				e 6	
		50hPa																							
		100hPa											i i			A.	*								
	Heights	200hPa											li i								1000		A.		
		500hPa																		*					
		700hPa											l. l.							+					
		850hPa																							
		1000hPa			(4)																				
	· ·	10hPa									1.														
		20hPa														5									
RMSE		50hPa																							
		100hPa														A.				10 X			-	19 - 15	
	Vector Wind	200hPa																							
		500hPa																							
		700hPa																							
-		850hPa											1. A.										1	2 X	
		1000hPa											i î												
	-	10hPa		V			÷								V		V			V					
	-	20hPa																	-						
		50hPa															*								
		100hPa																							+
	Temp	200hPa																		*					
	0.110.55	500hPa									14:1		Î.												
		700hPa			140		1						1											1000	

Full Resolution (T1534/T574) Trials: Summary Scorecard (02-01 through 04-29 2015)

*

. . *

.

.

- A scale-selective dynamic constraint has been developed based upon the ideas of NNMI
 - Successful implementation of TLNMC into global version of GSI at NCEP and GMAO
 - Incremental: does not force analysis (much) away from the observations compared to an unconstrained analysis
 - Improved analyses and subsequent forecast skill, particularly in extratropical mass fields
 - Key contribution in 3DVAR and hybrid 3D/4D EnVar
- Work is on-going to apply TLNMC to regional applications & domains (Dave Parrish – NCEP, Part I)

TLNMC Summary

- Some of the negatives
 - Slightly detrimental in tropics
 - Dry, adiabatic tendency model
 - Formulation modifications/additions
 - Computational cost in context of 4D EnVar
 - Application over k time levels
 - Currently using single basic state, need to expand to time dimension
 - Large corrections at very high levels
 - Potentially problematic if interested in upper atmosphere

Upper Atmosphere Increment From GMAO

Large corrections (increments) at upper levels away from observations due to projections from below

Linearized "Moist Physics" in the TLNMC (Cathy Thomas)

- Linearized processes added:
 - Grid scale condensation
 - Large scale precipitation
- No direct correction to moisture within the TLNMC
- Added physics modifies the temperature tendencies only

Shaded – Background Humidity Blue Contours – Humidity Analysis Increment Black Contours – Difference with and without Moist Processes

Results

- T254 Eulerian GFS
- Hybrid 3DEnVar
- 22 Nov 23 Dec 2013

- Moist experiment performs slightly better globally, but results are not statistically significant and are dependent on region and variable.
- Northern Hemisphere generally improved, with tropics slightly degraded, neither significant.

Summary

- Initialization still matters
- Work ongoing to optimize TLNMC for operational use and next-generation DA
 - Higher resolution, clouds, tropical modes, etc.
 - Software optimization
 - More linear physics, computational optimization
- Testing (potential) alternatives such as IAU, though it seems best (overall) results come from system with TLNMC