Linear and Weakly Nonlinear Energetics of Global Nonhydrostatic Normal Modes

Carlos Frederico M. Raupp* and André Teruya
Department of Atmospheric Sciences
University of Sao Paulo, Sao Paulo/Brazil

Financial Support: FAPESP (São Paulo Research Foundation - Grant 09/11643-4)

Introduction

$>$ Conventional coarse resolution global circulation atmospheric models (AGCMs) neglect the vertical acceleration to prevent computational constraints related to stability of numerical solution in explicit numerical schemes (hydrostatic assumption) \rightarrow Hydrostatic AGCMs;
$>$ The increase of computer speed and memory, as well as the development of massively parallel computing techniques, has allowed the development of global nonhydrostatic modeling.
> Thus, with the increasing development of global nonhydrostatic AGCMs, it is important to understand the dynamics of these models in a theoretical point of view \rightarrow For this purpose one needs to analyze the normal modes of global nonhydrostatic atmospheric models;
$>$ Normal modes \rightarrow small amplitude oscillations around a background state at rest and characterized by a stable stratification \rightarrow eigensolutions of linearized PDEs;

References on Nonhydrostatic Normal Modes

>Linear theory of nonhydrostatic normal modes:
(i) Kasahara and Qian (MWR 2000) \Rightarrow "Normal modes of a Global Nonhydrostatic Atmospheric Model";
(ii) Qian and Kasahara (Pure Appl. Geophys., 2003) \Rightarrow "Nonhydrostatic Atmospheric Normal Modes on Beta Planes";
(iii) Kasahara (J. Meteor. Soc. Japan, 2003) \Rightarrow "On the Nonhydrostatic Atmospheric Models with the Inclusion of the Horizontal Component of the Earth's Angular Velocity" (non-traditional Coriolis terms);
(iv) Kasahara (JAS 2003) \Rightarrow "The Roles of the Horizontal Component of the Earth's Angular Velocity in Nonhydrostatic Linear Models";
(v) Kasahara (NCAR Report 2003) \Rightarrow " Free Oscillations of Deep Nonhydrostatic Global Atmospheres: Theory and a Test of Numerical Schemes";

Introduction

Goal of this Study

(i) First we further analyze the energetics of the linear eigenmodes of the shallow global nonhydrostatic model presented by Kasahara and Qian (2000);
(li) Then we extend the theory of global nonhydrostatic normal modes by accounting for the effect of nonlinearity.

Model and Governing Equations

>Model: shallow nonhydrostatic fluid over a rotating sphere of radius a;
Traditional Approximation: $r=\mathbf{a}+\mathrm{z} \approx \mathbf{a}$, where $\mathbf{a}=6370 \mathrm{Km}$ (Earth's radius) and z is the height above the earth's surface; $\partial / \partial r \approx \partial / \partial z$
$>$ Governing Equations:

$$
\begin{gather*}
\frac{D u}{D t}-\left(f+\frac{u \tan \varphi}{a}\right) \mathrm{v}=-\frac{1}{\rho a \cos \varphi} \frac{\partial p}{\partial \lambda} \tag{1a}\\
\frac{D \mathrm{v}}{D t}+\left(f+\frac{u \tan \varphi}{a}\right) \mathrm{u}=-\frac{1}{\rho a} \frac{\partial p}{\partial \varphi} \tag{1b}\\
\delta_{H} \frac{D \mathrm{w}}{\mathrm{Dt}}=-g-\frac{1}{\rho} \frac{\partial p}{\partial \mathrm{z}} \tag{1c}
\end{gather*}
$$

$\lambda \rightarrow$ longitude;
$\varphi \rightarrow$ latitude;
$\mathrm{f}=2 \Omega \sin \varphi \rightarrow$ Coriolis parameter;
$\gamma=C_{p} / C_{v}$;

$$
\begin{equation*}
\frac{D \rho}{D t}+\rho\left(\nabla \cdot \vec{V}+\frac{\partial \mathrm{w}}{\partial \mathrm{z}}\right)=0 \tag{1d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{D p}{D t}=\gamma R T \frac{D \rho}{D t} \tag{1e}
\end{equation*}
$$

$\mathrm{T} \rightarrow$ Temperature field;

$$
\begin{equation*}
p=\rho R T \tag{1f}
\end{equation*}
$$

$\frac{D}{D t}=\frac{\partial}{\partial t}+\vec{V} \bullet \nabla+\mathrm{w} \frac{\partial}{\partial z} ; \quad \vec{V} \bullet \nabla=\frac{u}{a \cos \varphi} \frac{\partial}{\partial \lambda}+\frac{\mathrm{v}}{\mathrm{a}} \frac{\partial}{\partial \varphi} ; \quad \nabla \bullet \vec{V}=\frac{1}{a \cos \varphi}\left[\frac{\partial u}{\partial \lambda}+\frac{\partial(\mathrm{v} \cos \varphi)}{\partial \varphi}\right]$

Model and Governing Equations

$>$ From the governing equations (1), we have considered small (but not infinitesimal) amplitude perturbations around a resting, hydrostatic and isothermal background state:
$u=u_{0}+u^{\prime} ; v=v_{0}+v^{\prime} ; w=w_{0}+w^{\prime}$, with $u_{0}=v_{0}=w_{0}=0$;
$p=p_{0}(z)+p^{\prime} ; \rho=\rho_{0}(z)+\rho^{\prime} ;$ with $d p_{0} / d z=-\rho_{0} g$ and $T=T_{0}+T^{\prime}$, with $T_{0}=$ const;
$>$ Inserting (2) into (1) and retaning only the terms until second order in terms of perturbations:

$$
\begin{gather*}
\frac{\partial u^{\prime}}{\partial t}-f \mathrm{v}^{\prime}+\frac{1}{\rho_{0} a \cos \varphi} \frac{\partial p^{\prime}}{\partial \lambda}=-\left[\vec{V}^{\prime} \bullet \nabla u^{\prime}+w^{\prime} \frac{\partial u^{\prime}}{\partial z}\right]+\frac{u^{\prime} \mathrm{v}^{\prime}}{\mathrm{a}} \tan \varphi+\frac{\rho^{\prime}}{\rho_{0}{ }^{2} a \cos \varphi} \frac{\partial p^{\prime}}{\partial \lambda} \tag{3a}\\
\frac{\partial \mathrm{v}^{\prime}}{\partial t}+f \mathrm{u}^{\prime}+\frac{1}{\rho_{0} a} \frac{\partial p^{\prime}}{\partial \varphi}=-\left[\vec{V}^{\prime} \bullet \nabla \mathrm{v}^{\prime}+\mathrm{w}^{\prime} \frac{\partial \mathrm{v}^{\prime}}{\partial \mathrm{z}}\right]-\frac{u^{\prime 2}}{a} \tan \varphi+\frac{\rho^{\prime}}{\rho_{0}{ }^{2} a} \frac{\partial p^{\prime}}{\partial \varphi} \tag{3b}\\
\frac{\partial \mathrm{w}^{\prime}}{\partial \mathrm{t}}+\frac{1}{\rho_{0}}\left(\frac{\partial p^{\prime}}{\partial \mathrm{z}}+\frac{g}{C_{s}^{2}} p^{\prime^{\prime}}-\theta^{\prime}\right)=-\left[\vec{V}^{\prime} \bullet \nabla \mathrm{w}^{\prime}+\mathrm{w}^{\prime}\right. \tag{3c}\\
\left.\frac{\partial \mathrm{w}^{\prime}}{\partial z}\right]+\frac{\rho^{\prime}}{\rho_{0}{ }^{2}} \frac{\partial p^{\prime}}{\partial \mathrm{z}}+g\left(\frac{\rho^{\prime}}{\rho_{0}}\right)^{2} \quad \text { (3c) } \tag{3d}\\
\frac{1}{\rho_{0} C_{s}^{2}}\left(\frac{\partial p^{\prime}}{\partial t}-\rho_{0} g \mathrm{w}^{\prime}\right)+\nabla \bullet \vec{V}^{\prime}+\frac{\partial \mathrm{w}^{\prime}}{\partial z}=-\frac{1}{C_{s}^{2}}\left[\vec{V}^{\prime} \bullet \nabla p^{\prime}+\mathrm{w}^{\prime} \frac{\partial \mathrm{p}^{\prime}}{\partial z}\right]-\rho^{\prime}\left(\nabla \bullet \vec{V}^{\prime}+\frac{\partial \mathrm{w}^{\prime}}{\partial z}\right)+\frac{1}{C_{s}^{2}} \frac{T^{\prime}}{T_{0}}\left[\frac{\partial p^{\prime}}{\partial t}-\rho_{0} g \mathrm{w}^{\prime}\right] \tag{3e}\\
\frac{\partial \theta^{\prime}}{\partial t}+\rho_{0} N^{2} \mathrm{w}^{\prime}=-\left[\vec{V}^{\prime} \bullet \nabla \theta^{\prime}+\mathrm{w}^{\prime} \frac{\partial \theta^{\prime}}{\partial \mathrm{z}}\right]+\frac{g}{C_{s}^{2}} \frac{T^{\prime}}{T_{0}}\left(\frac{\partial p^{\prime}}{\partial z}-\rho_{0} g \mathrm{w}^{\prime}\right) \quad \text { (3e) }
\end{gather*}
$$

Model and Governing Equations

$$
\begin{align*}
& \text { Where: } \theta^{\prime}=\frac{g}{C_{S}^{2}} p^{\prime}-g \rho^{\prime} \text { (3f); } \quad \frac{p^{\prime}}{p_{0}}=\frac{T^{\prime}}{T_{0}}+\frac{\rho^{\prime}}{\rho_{0}} \quad \text { (3g) } \tag{3g}\\
& N^{2}=-g\left(\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d z}+\frac{g}{C_{S}^{2}}\right)=\frac{\kappa g}{H} \\
& H=\frac{R T_{0}}{g} \quad \kappa=\frac{R}{C_{p}}
\end{align*}
$$

> Following Kasahara and Qian (2000) we have rescaled the perturbations according to:

$$
\left[\begin{array}{c}
u^{\prime} \tag{4}\\
\mathrm{v}^{\prime} \\
\mathrm{w}^{\prime} \\
\mathrm{p}^{\prime} \\
\theta^{\prime} \\
\rho^{\prime}
\end{array}\right]=\left[\begin{array}{c}
u \rho_{0}{ }^{-\frac{1}{2}} \\
\mathrm{v} \rho_{0}-\frac{1}{2} \\
\mathrm{w} \rho_{0}^{-\frac{1}{2}} \\
\mathrm{p} \rho_{0}^{\frac{1}{2}} \\
\theta \rho_{0}^{\frac{1}{2}} \\
\rho \rho_{0}
\end{array}\right]
$$

Model and Governing Equations

$>$ Substituting (4) into (3) we get:

$$
\begin{gather*}
\frac{\partial u}{\partial t}-f \mathrm{v}+\frac{1}{a \cos \varphi} \frac{\partial p}{\partial \lambda}=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla u+w L_{z}^{-}(u)\right]+\frac{u \mathrm{v}}{\mathrm{a}} \tan \varphi+\frac{\rho}{a \cos \varphi} \frac{\partial p^{\prime}}{\partial \lambda}\right\} \tag{5a}\\
\frac{\partial \mathrm{v}}{\partial t}+f \mathrm{u}+\frac{1}{a} \frac{\partial p}{\partial \varphi}=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla \mathrm{v}+w L_{z}^{-}(\mathrm{v})\right]-\frac{u^{2}}{\mathrm{a}} \tan \varphi+\frac{\rho}{a} \frac{\partial p^{\prime}}{\partial \varphi}\right\} \tag{5b}\\
\frac{\partial \mathrm{w}}{\partial \mathrm{t}}+\frac{\partial p}{\partial \mathrm{z}}+\Gamma p-\theta=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla \mathrm{w}+\mathrm{wL}_{\mathrm{z}}^{-}(\mathrm{w})\right]+\rho \frac{\partial p}{\partial \mathrm{z}}+g \rho^{2}\right\} \tag{5c}
\end{gather*}
$$

$$
\begin{equation*}
\frac{1}{C_{s}^{2}} \frac{\partial \mathrm{p}}{\partial \mathrm{t}}+\nabla \bullet \vec{V}+\frac{\partial \mathrm{w}}{\partial \mathrm{z}}-\Gamma \mathrm{w}=-\rho_{0}^{-\frac{1}{2}}\left\{\frac{1}{C_{s}^{2}}\left[\vec{V} \bullet \nabla p+\mathrm{wL}_{\mathrm{z}}^{+}(p)\right]-\rho\left(\nabla \bullet \vec{V}+L_{z}^{-}(\mathrm{w})\right)+\frac{1}{C_{s}^{2}}\left(\frac{p}{R T_{0}}-\rho\right)\left(\frac{\partial p}{\partial \mathrm{t}}-g \mathrm{w}\right)\right\} \tag{5d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{N^{2}} \frac{\partial \theta}{\partial t}+\mathrm{w}=-\rho_{0}^{-\frac{1}{2}}\left\{\frac{1}{N^{2}}\left[\overrightarrow{\mathrm{~V}} \bullet \nabla \theta+\mathrm{wL}_{\mathrm{z}}^{+}(\theta)\right]+\frac{g}{N^{2} C_{S}^{2}}\left(\frac{\mathrm{p}}{\mathrm{RT}_{0}}-\rho\right)\left(\frac{\partial p}{\partial \mathrm{z}}-g \mathrm{w}\right)\right\} \tag{5e}
\end{equation*}
$$

Where,

$$
\begin{aligned}
& \quad L_{z}^{+}()=\frac{\partial}{\partial z}+\frac{1}{2 \rho_{0}} \frac{d \rho_{0}}{d z}=\frac{\partial}{\partial z}-\frac{1}{2 H} \quad L_{z}^{-}()=\frac{\partial}{\partial z}-\frac{1}{2 \rho_{0}} \frac{d \rho_{0}}{d z}=\frac{\partial}{\partial z}+\frac{1}{2 H} \\
& \Gamma=\frac{1}{2 \rho_{0}} \frac{d \rho_{0}}{d z}+\frac{g}{C_{S}^{2}}=\frac{1-2 \kappa}{2 H}
\end{aligned}
$$

Eigenmodes of the Linear Problem (Normal Modes)

$>$ If the second-order nonlinear terms are disregarded, equations (5) become:

$$
\begin{align*}
& \frac{\partial u}{\partial t}-f \mathrm{v}+\frac{1}{a \cos \varphi} \frac{\partial p}{\partial \lambda}=0 \tag{6a}\\
& \frac{\partial \mathrm{v}}{\partial t}+f \mathrm{u}+\frac{1}{a} \frac{\partial p}{\partial \varphi}=0 \tag{6b}\\
& \frac{\partial \mathrm{w}}{\partial \mathrm{t}}+\frac{\partial p}{\partial \mathrm{z}}+\Gamma p-\theta=0 \\
& \frac{1}{C_{s}^{2}} \frac{\partial p}{\partial t}+\nabla \cdot \vec{V}+\frac{\partial \mathrm{w}}{\partial z}-\Gamma \mathrm{w}=0 \tag{6d}\\
& \frac{1}{N^{2}} \frac{\partial \theta}{\partial t}+\mathrm{w}=0
\end{align*}
$$

$>$ The eigensolutions of (6) were determined by Kasahara and Qian (2000) for the following boundary conditions:
(i) $\mathrm{w}=0$ at $\mathrm{z}=0$ and at $\mathrm{z}=\mathrm{z}_{\mathrm{T}} \quad$ (7a)
(ii) Periodic solutions in longitude (7b)
(iii) Regularity at the poles
(7c)

Eigenmodes of the Linear Problem

The eigensolutions of (6) with boundary conditions (7) are given by:

$$
\left[\begin{array}{l}
u \tag{8}\\
\mathrm{v} \\
p \\
w \\
\theta
\end{array}\right]=\left[\begin{array}{l}
U(\varphi) \xi(z) \\
i V(\varphi) \xi(z) \\
P(\varphi) \xi(z) \\
i P(\varphi) \eta(z) \\
P(\varphi) \Theta(z)
\end{array}\right] e^{i s \lambda-i \sigma t}
$$

where:

$$
\begin{aligned}
& \sigma \xi\left(\frac{1}{g H_{e}}-\frac{1}{C_{s}^{2}}\right)+\left(\frac{d \eta}{d z}-\Gamma \eta\right)=0 \\
& -\sigma \Theta+N^{2} \eta=0
\end{aligned}
$$

$$
\sigma \eta+\left(\frac{d \xi}{d z}+\Gamma \xi\right)-\Theta=0
$$

$$
\begin{gathered}
-\sigma U-f V+\frac{s P}{a \cos \varphi}=0 \\
\sigma V+f U+\frac{1}{a} \frac{d P}{d \varphi}=0 \\
\frac{1}{a \cos \varphi}\left[s U+\frac{d}{d \varphi}(V \cos \varphi)\right]=\frac{\sigma P}{g H_{e}}
\end{gathered}
$$

horizontal structure equations (Laplace's tidal equations)

Eigenmodes of the Linear Problem

$>$ The vertical structure equations can be written in terms of η as follows:

$$
\begin{aligned}
& \frac{d^{2} \eta}{d z^{2}}+\left(\lambda-\Gamma^{2}\right) \eta=0 \quad ; \quad \text { with } \mathrm{BCs}: \eta=0 \text { at } \mathrm{z}=0 \text { and at } \mathrm{z}=\mathrm{z}_{\mathrm{T}} ; \\
& \lambda=\left(\frac{1}{g H_{e}}-\frac{1}{C_{s}^{2}}\right)\left(N^{2}-\delta_{H} \sigma^{2}\right)
\end{aligned}
$$

$>$ The solution is given by: $\quad \eta(z)=A_{k} \sin \left(\frac{k \pi}{z_{T}} z\right), k=1,2,3 \ldots$, provided that

$$
\lambda_{k}=\left(\frac{k \pi}{z_{T}}\right)^{2}+\Gamma^{2} \quad \begin{aligned}
& \text { Eigenvalues of the vertical structure } \\
& \text { equations }
\end{aligned}
$$

$>$ Separation constant: $\quad H_{e}=\frac{C_{s}^{2}}{g}\left(1+\frac{\lambda_{k} C_{s}^{2}}{N^{2}-\delta_{H} \sigma^{2}}\right)^{-1}$

$$
\sigma=F\left(s, l, H_{e}\right) \longrightarrow \begin{aligned}
& \text { Eigenvalues of the Laplace's tidal } \\
& \text { equations }
\end{aligned}
$$

Eigenmodes of the Linear Problem

$>$ Different oscillation regimes: (I) $H_{e}>\frac{C_{S}^{2}}{g} \rightarrow \sigma^{2}>N^{2} \rightarrow$ inertio-acoustic modes;
(ii) $H_{e}<\frac{C_{S}^{2}}{g} \rightarrow \sigma^{2}<N^{2} \rightarrow$ inertio-gravity modes;

Dispersion curves for acoustic and gravity modes for $\mathrm{I}=0, \mathrm{k}=1$, and symmetric about the equator.

Eigenmodes of the Linear Problem

$>$ Different oscillation regimes: (I) $H_{e}>\frac{C_{S}^{2}}{g} \rightarrow \sigma^{2}>N^{2} \rightarrow$ inertio-acoustic modes;
(ii) $H_{e}<\frac{C_{S}^{2}}{g} \rightarrow \sigma^{2}<N^{2} \rightarrow$ inertio-gravity modes;

Equivalent heights H_{e} for acoustic and gravity modes for $\mathrm{I}=0, \mathrm{k}=1$, and symmetric about the equator.

Energetics of Normal modes

$>$ Kasahara and Qian (2000) have demonstrated the orthogonality condition for the eigenmodes:

$$
\left(i \sigma_{j}-i \sigma_{k}\right) \int_{0}^{z_{\tau}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\left(u_{j} u_{k}^{*}+\mathrm{v}_{j} \mathrm{v}_{k}^{*}+\delta_{H} \mathrm{w}_{\mathrm{j}} \mathrm{w}_{\mathrm{k}}^{*}\right)+\frac{\mathrm{p}_{\mathrm{j}} \mathrm{p}_{\mathrm{k}}^{*}}{\mathrm{C}_{\mathrm{S}}^{2}}+\frac{\theta_{\mathrm{j}} \theta_{\mathrm{k}}^{*}}{\mathrm{~N}^{2}}\right] a^{2} \cos \varphi d \varphi d \lambda d z=0
$$

$>$ For the case $\mathrm{j}=\mathrm{k}$ we have the total energy of the j -th eigenmode of the system:

$$
\begin{gathered}
E T_{j}=\int_{0}^{z_{T}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[K_{j}+E_{j}+A_{j}\right] a^{2} \cos \varphi d \varphi d \lambda d z>0 \\
\text { Where: } K_{j}=\frac{1}{2} \int_{0}^{z_{T}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\left(u_{j}^{2}+\mathrm{v}_{j}^{2}+\delta_{H} \mathrm{w}_{\mathrm{j}}^{2}\right)\right] a^{2} \cos \varphi d \varphi d \lambda d z \longrightarrow \text { Kinetic energy } \\
E_{j}=\frac{1}{2} \int_{0}^{z_{T}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{p}_{\mathrm{j}}^{2}}{\mathrm{C}_{\mathrm{s}}^{2}} a^{2} \cos \varphi d \varphi d \lambda d z \longrightarrow \text { elastic energy } \\
A_{j}=\frac{1}{2} \int_{0}^{z_{\pi}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\theta_{\mathrm{j}}^{2}}{\mathbf{N}^{2}} \boldsymbol{a}^{2} \cos \varphi d \varphi d \lambda d z \longrightarrow \text { Termobaric energy }
\end{gathered}
$$

Energetics of Normal modes

Energetics of eastward inertio-acoustic modes with meridional index $\mathrm{I}=0$ and $\mathrm{k}=1$.

Energetics of Normal modes

Energetics of eastward inertio-acoustic modes with meridional index $\mathrm{I}=0$ and $\mathrm{k}=1$. Each energy type is normalized by total energy.

Energetics of Normal modes

Energetics of eastward inertio-gravity modes with meridional index $\mathrm{I}=0$ and $\mathrm{k}=1$.

Energetics of Normal modes

Energetics of eastward inertio-gravity modes with meridional index I $=0$ and $\mathrm{k}=1$. Each energy type is normalized by total energy.

Resonant Nonlinear Interactions of Global Nonhydrostatic Modes

$$
\begin{gather*}
\frac{\partial u}{\partial t}-f \mathrm{v}+\frac{1}{a \cos \varphi} \frac{\partial p}{\partial \lambda}=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla u+w L_{z}^{-}(\mathrm{u})\right]+\frac{u \mathrm{v}}{\mathrm{a}} \tan \varphi+\frac{\rho}{a \cos \varphi} \frac{\partial p^{\prime}}{\partial \lambda}\right\} \\
\frac{\partial \mathrm{v}}{\partial t}+f \mathrm{u}+\frac{1}{a} \frac{\partial p}{\partial \varphi}=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla \mathrm{v}+w L_{z}^{-}(\mathrm{v})\right]-\frac{u^{2}}{\mathrm{a}} \tan \varphi+\frac{\rho}{a} \frac{\partial p^{\prime}}{\partial \varphi}\right\} \\
\frac{\partial \mathrm{w}}{\partial \mathrm{t}}+\frac{\partial p}{\partial \mathrm{z}}+\Gamma p-\theta=-\rho_{0}^{-\frac{1}{2}}\left\{\left[\vec{V} \bullet \nabla \mathrm{w}+\mathrm{wL}_{\mathrm{z}}^{-}(\mathrm{w})\right]+\rho \frac{\partial p}{\partial \mathrm{z}}+g \rho^{2}\right\} \\
\frac{1}{C_{s}^{2}} \frac{\partial p}{\partial t}+\nabla \bullet \vec{V}+\frac{\partial \mathrm{w}}{\partial \mathrm{z}}-\Gamma \mathrm{w}=\rho_{0}^{-\frac{1}{2}}\left\{-\frac{1}{C_{S}^{2}}\left[\vec{V} \bullet \nabla p+\mathrm{wL}_{z}^{+}(\mathrm{p})\right]-\rho\left(\nabla \bullet \vec{V}+\mathrm{L}_{\mathrm{z}}^{-}(\mathrm{w})\right)+\frac{1}{C_{S}^{2}}\left(\frac{p}{R T_{0}}-\rho\right)\left(\frac{\partial p}{\partial t}-g \mathrm{w}\right)\right\} \tag{5d}\\
\frac{1}{N^{2}} \frac{\partial \theta}{\partial t}+\mathrm{w}=\rho_{0}^{-\frac{1}{2}}\left\{-\frac{1}{N^{2}}\left[\vec{V} \bullet \nabla \theta+\mathrm{wL}_{\mathrm{z}}^{+}(\theta)\right]+\frac{g}{N^{2} C_{s}^{2}}\left(\frac{p}{R T_{0}}-\rho\right)\left(\frac{\partial p}{\partial t}-g \mathrm{w}\right)\right\} \\
\text { Where, } \quad \\
\quad L_{z}^{+}()=\frac{\partial}{\partial \mathrm{z}}+\frac{1}{2 \rho_{0}} \frac{d \rho_{0}}{d z}=\frac{\partial}{\partial \mathrm{z}}-\frac{1}{2 H} \\
\Gamma \\
\quad=\frac{1}{2 \rho_{0}} \frac{d \rho_{0}^{-}}{d z}+\frac{g}{C_{S}^{2}}=\frac{1-2 \kappa}{2 H}
\end{gather*}
$$

Resonant Interactions of nonhydrostaic nonrmal modes: general case

Ansatz \Rightarrow Solution with three modes:
$\left[\begin{array}{l}u \\ \mathrm{v} \\ \mathrm{w} \\ \mathrm{p} \\ \theta \\ \rho\end{array}\right](\lambda, \varphi, z, t)=A_{1}(t)\left[\begin{array}{c}U_{1}(\varphi, z) \\ \mathrm{iV}_{1}(\varphi, z) \\ \mathrm{iW}_{1}(\varphi, z) \\ \mathrm{P}_{1}(\varphi, z) \\ \theta_{1}(\varphi, z) \\ \rho_{1}(\varphi, z)\end{array}\right] \quad e^{i s_{1},-i \sigma_{1} t}+A_{2}(t)\left[\begin{array}{c}U_{2}(\varphi, z) \\ \mathrm{iV}_{2}(\varphi, z) \\ \mathrm{WW}_{2}(\varphi, z) \\ \mathrm{P}_{2}(\varphi, z) \\ \theta_{2}(\varphi, z) \\ \rho_{2}(\varphi, z)\end{array}\right]\left[\begin{array}{c}i s_{2} \lambda-i \sigma_{2} t\end{array}\right] A_{3}(t)\left[\begin{array}{c}U_{3}(\varphi, z) \\ \mathrm{iV}_{3}(\varphi, z) \\ \mathrm{iW}_{3}(\varphi, z) \\ \mathrm{P}_{3}(\varphi, z) \\ \theta_{3}(\varphi, z) \\ \rho_{3}(\varphi, z)\end{array}\right] e^{i s_{3} z-i \sigma_{3} t}+C . C$

With the following resonance relations satisfied: $\quad I_{z}=\int_{0}^{z_{T}} \rho_{0}^{-\frac{1}{2}} \cos \left[\left(k_{1} \pm k_{2} \pm k_{3}\right) \frac{\pi z}{z_{T}}\right] d z$

$$
\begin{aligned}
& \mathrm{k}_{3}=\mathrm{k}_{1}+\mathrm{k}_{2} \text { (not excluding) } \\
& \mathrm{s}_{1}=\mathrm{s}_{2}+\mathrm{s}_{3} \\
& \sigma_{1}=\sigma_{2}+\sigma_{3}
\end{aligned}
$$

Nonlinear resonant triad interaction conditions
condition for meridional structures satisfied

Resonant Interactions between Acoustic and Gravity Modes

$>$ Substituting the ansatz into the PDEs (5) we get:

$$
\begin{aligned}
& E T_{1} \frac{d A_{1}}{d t}=i \alpha_{1}^{23} A_{2} A_{3} \\
& E T_{2} \frac{d A_{2}}{d t}=i \alpha_{2}^{13} A_{1} A_{3}^{*} \\
& E T_{3} \frac{d A_{3}}{d t}=i \alpha_{3}^{12} A_{1} A_{2}^{*}
\end{aligned}
$$

$\alpha_{1}{ }^{23}, \alpha_{2}{ }^{13}, \alpha_{3}{ }^{12} \Rightarrow$ Nonlinear coupling constants;

Resonant Interactions of nonhydrostaic nonrmal modes: general case

$$
\begin{aligned}
& \alpha_{1}^{23}=\int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[N_{u}^{(2,3)} u_{1}^{* *}+N_{\mathrm{v}}^{(2,3)} \mathrm{v}_{1}^{*}+N_{\mathrm{w}}^{(2,3)} \mathrm{w}_{1}^{*}+N_{u}^{(2,3)} u_{1}^{*}+N_{\mathrm{p}}^{(2,3)} \mathrm{p}_{1}^{*}+N_{\theta}^{(2,3)} \theta_{1}^{*}\right]^{2} \cos \varphi d \varphi \rho_{0}^{-\frac{1}{2}} d z \\
& \alpha_{2}^{13}=\int_{0}^{2 r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[N_{u}^{(1,3)} u_{2}^{*}+N_{\mathrm{v}}^{(1,3)} \mathrm{v}_{2}^{*}+N_{\mathrm{w}}^{(1,3)} \mathrm{w}_{2}^{*}+N_{u}^{(1,3)} u_{2}^{*}+N_{\mathrm{p}}^{(1,3)} \mathrm{p}_{2}^{*}+N_{\theta}^{(1,3)} \theta_{2}^{*}\right]^{2} \cos \varphi d \varphi \rho_{0}^{-\frac{1}{2}} d z \\
& \alpha_{3}^{12}=\int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\pi \frac{\pi}{2}}\left[N_{u}^{(1,2)} u_{3}^{*}+N_{\mathrm{v}}^{(1,2)} \mathrm{v}_{3}^{*}+N_{\mathrm{w}}^{(1,2)} \mathrm{w}_{3}^{*}+N_{u}^{(1,2)} u_{3}^{* *}+N_{\mathrm{p}}^{(1,2)} \mathrm{p}_{3}^{*}+N_{\theta}^{(1,2)} \theta_{3}^{*}\right] \rho^{2} \cos \varphi d \varphi \rho_{0}^{-\frac{1}{2}} d z
\end{aligned}
$$

Resonant Interactions of nonhydrostaic nonrmal modes: general case

$$
\begin{aligned}
& N_{u}^{(2,3)}=-\left[u_{2} \frac{i s_{3} u_{3}}{a \cos \varphi}+\frac{\mathrm{v}_{2}}{a} \frac{\partial u_{3}}{\partial \varphi}+\mathrm{w}_{2} \mathrm{~L}_{\mathrm{z}}^{-}\left(u_{3}\right)\right]+\frac{u_{2} \mathrm{v}_{3}}{\mathrm{a}} \tan \varphi+\frac{\rho_{2}}{a \cos \varphi} i s_{3} p_{3}+C P \\
& N_{\mathrm{v}}^{(2,3)}=-\left[u_{2} \frac{i s_{3} \mathrm{v}_{3}}{a \cos \varphi}+\frac{\mathrm{v}_{2}}{a} \frac{\partial \mathrm{v}_{3}}{\partial \varphi}+\mathrm{w}_{2} \mathrm{~L}_{\mathrm{z}}^{-}\left(\mathrm{v}_{3}\right)\right]-\frac{u_{2} u_{3}}{\mathrm{a}} \tan \varphi+\frac{\rho_{2}}{a} \frac{\partial p_{3}}{\partial \varphi}+C P \\
& N_{\mathrm{w}}^{(2,3)}=-\delta_{H}\left[\frac{\mathrm{u}_{2}}{\mathrm{a} \cos \varphi} \mathrm{is}_{3} \mathrm{~W}_{3}+\frac{\mathrm{v}_{2}}{a} \frac{\partial \mathrm{w}_{3}}{\partial \varphi}+\mathrm{w}_{2} L_{z}^{-}\left(\mathrm{w}_{3}\right)\right]+\rho_{2} L_{z}^{+}\left(p_{3}\right)+g \rho_{2} \rho_{3}+C P \\
& N_{p}^{(2,3)}=-\frac{1}{C_{S}^{2}}\left[\frac{u_{2}}{a \cos \varphi} i s_{3} p_{3}+\frac{\mathrm{v}_{2}}{a} \frac{\partial \mathrm{p}_{3}}{\partial \varphi}+\mathrm{w}_{2} \mathrm{~L}_{\mathrm{z}}^{+}\left(\mathrm{p}_{3}\right)\right]-\rho_{2}\left[\frac{1}{a \cos \varphi}\left(i s_{3} u_{3}+\frac{\partial\left(\mathrm{v}_{3} \cos \varphi\right)}{\partial \varphi}\right)+L_{z}^{-}\left(\mathrm{w}_{3}\right)\right] \\
& +\frac{1}{C_{s}^{2}}\left(\frac{p_{2}}{R T_{0}}-\rho_{2}\right)\left(-i \sigma_{3} p_{3}-g \mathrm{w}_{3}\right)+C P \\
& N_{\theta}^{(2,3)}=-\frac{1}{N^{2}}\left[\frac{u_{2}}{a \cos \varphi} i s_{3} \theta_{3}+\frac{\mathrm{v}_{2}}{a} \frac{\partial \theta_{3}}{\partial \varphi}+\mathrm{w}_{2} \mathrm{~L}_{\mathrm{z}}^{+}\left(\theta_{3}\right)\right]+\frac{g}{C_{S}^{2} N^{2}}\left(\frac{p_{2}}{R T_{0}}-\rho_{2}\right)\left(-i \sigma_{3} p_{3}-g \mathrm{w}_{3}\right)+C P
\end{aligned}
$$

Resonant Interactions of nonhydrostaic nonrmal modes

From the complex amplitude equations it is easy to get the energy equations:

$$
\begin{aligned}
& E T_{1} \frac{d\left|A_{1}\right|^{2}}{d t}=-\alpha_{1}^{23} \operatorname{Im}\left(A_{1} A_{2}^{*} A_{3}^{*}\right) \\
& E T_{2} \frac{d\left|A_{2}\right|^{2}}{d t}=\alpha_{2}^{13} \operatorname{Im}\left(A_{1} A_{2}^{*} A_{3}^{*}\right) \\
& E T_{3} \frac{d\left|A_{3}\right|^{2}}{d t}=\alpha_{3}^{12} \operatorname{Im}\left(A_{1} A_{2}^{*} A_{3}^{*}\right)
\end{aligned}
$$

Condition for total energy to be conserved within a resonant triad interaction is:

$$
-\alpha_{1}^{23}+\alpha_{2}^{13}+\alpha_{3}^{12}=0
$$

Mode $1 \Rightarrow$ unstable mode of the triad.

Resonant Interactions between Acoustic and Gravity Modes

$>$ Analytical solutions of the conservative triad equations, assuming that
$\left(\left|\alpha_{3}^{12}\right|<\left|\alpha_{2}^{13}\right|<\left|\alpha_{1}^{23}\right|\right)$ and the amplitude of mode 1 is zero initially:

$$
\begin{aligned}
& E T_{1}\left|A_{1}(t)\right|^{2}=\left\lvert\, A_{2}(0)^{2}\left(\left|\frac{\alpha_{1}^{23}}{\alpha_{2}^{13}}\right|\right) s n^{2}\left(\frac{u}{m}\right)\right. \\
& E T_{2}\left|A_{2}(t)\right|^{2}=\left|A_{2}(0)\right|^{2} c n^{2}\left(\frac{u}{m}\right) \\
& E T_{3}\left|A_{3}(t)\right|^{2}=\left|A_{3}(0)\right|^{2} d n^{2}\left(\frac{u}{m}\right)
\end{aligned}
$$

Where sn, cn and dn are the Jacobian Elliptic functions, with argument u and parameter m given by

$$
\begin{aligned}
u & =\left|A_{3}(0)\right|\left|\alpha_{1}^{23} \alpha_{2}^{13}\right| t \\
m & =\frac{\alpha_{3}^{12}}{\alpha_{2}^{13}}\left(\frac{\left|A_{2}(0)\right|}{\left|A_{3}(0)\right|}\right)^{2}
\end{aligned}
$$

Resonant Interactions between Acoustic and Gravity Modes

$>$ Numerical results for a representative example of resonant triad containing two acousticinertia modes and one gravity-inertia mode:

Determination of a resonant triad involving a long inertio-acoustic, a short acoustic mode and a short gravity mode. The acoustic modes have $\mathrm{k}=1$ vertical structure, while the gravity mode has a $\mathrm{k}=2$ vertical structure.
$>$ Numerical results for a representative example of resonant triad containing two acousticinertia modes and one gravity-inertia mode:

Mode 1: unstable (pump) mode

Acoustic mode with $k=1 ; s=476, \mathrm{l}=0$ (first symmetric mode)

Mode 2:
Acoustic mode with $\mathrm{k}=1, \mathrm{~s}=1, \mathrm{l}=0$ (first symmetric mode)

Mode 3:
Gravity mode with $k=2, s=475, \mathrm{l}=0$ (first symmetric mode)

Mode 1	Mode 2	Mode 3	σ_{1} (cHz)	σ_{2} (cHz)	σ_{3} (cHz)	ET_{1} $(\mathrm{~J})$	ET_{2} $(\mathrm{~J})$	ET_{3} $(\mathrm{~J})$	α_{1}^{23}	α_{2}^{13}	α_{3}^{12}
$(1,476,0, \mathrm{~A})$	$(1,1,0, \mathrm{~A})$	$(2,475,0$, $\mathrm{G})$	6.293	5.888	0.407	1.3 x	1.3 x	7 x	4×10^{11}	3.7×10^{11}	2.6×10^{10}
10^{10}	10^{20}	10^{6}									

Resonant Interactions between Acoustic and Gravity Modes

$>$ Numerical results for a representative example of resonant triad containing two acousticinertia modes and one gravity-inertia mode:

Resonant Interactions between Acoustic and Gravity Modes

>Numerical results for a representative example of resonant triad containing two acousticinertia modes and one gravity-inertia mode:

$$
\begin{gathered}
\operatorname{modo~a~}(476,0,1, \mathrm{Al})- \\
\operatorname{modo} \mathrm{b}(1,0,1, \mathrm{Al})- \\
\text { modo } \mathrm{c}(475,0,2, \mathrm{Gl})- \\
\text { Energia Total }
\end{gathered}
$$

$$
0<m<1
$$

Resonant Interactions between Acoustic and Gravity Modes

$>$ Numerical results for a representative example of resonant triad containing two acousticinertia modes and one gravity-inertia mode:

$$
\begin{gathered}
\text { modo a }(476,0,1, \mathrm{Al}) \\
\text { modo } \mathrm{b}(1,0,1, \mathrm{Al}) \\
\text { modo } \mathrm{c}(475,0,2, \mathrm{Gl}) \\
\text { Energia Total }
\end{gathered}
$$

$0 \ll \mathrm{~m}<1$

Vertical velocity at $\varphi=$ 100 S and $\mathrm{z}=9 \mathrm{Km}$;

Short acoustic mode activity.

$$
0 \ll m<1
$$

zonal velocity at $\varphi=0^{\circ}$ and $\mathrm{z}=4.5 \mathrm{Km}$

Short gravity mode activity.

Summary and Remarks

> Here we have investigated the possibility of resonant interactions involving inertioacoustic and inertio-gravity modes in a shallow-nonhydrostatic global atmospheric model (weakly nonlinear extension of Kasahara and Qian (2000))
$>$ For the internal modes (rigid lid boundary condition), we found that the only possibility for such resonances is that one gravity mode interacts with two acoustic modes (similar to Rossby-gravity-gravity interaction in the hydrostatic dynamics);
> This kind of resonant interaction can potentially yield vacillations in the dynamical fields with periods varying from a daily (and intra-diurnal) time-scale up to almost a month long, depending on the way in which the initial energy is distributed on the triad components;
> Acoustic modes are usually filtered out from numerical models to avoid computational constraints associated with explicit numerical schemes, even in nonhydrostatic models;

Next Steps of the Project

$>$ To investigate the possibility of resonant interactions for the limiting case of vertical modes where $\mathrm{z}_{\mathrm{T}} \rightarrow \infty$.

> To study the possibility of long-short wave interactions.
$>$ To investigate the dynamics of these resonant interactions with the inclusion of diabatic effects;

