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Normal mode function (NMF) representation  

Balance: part of the circulation that is associated with the 
Rossby type  (quasi-geostrophic, ROT) of solutions to the 
linearized primitive equations.  

The unbalanced part projects onto the inertio-gravity solutions 
that propagate eastward (EIG) or westward (WIG).  
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Derivation of NMF following Kasahara&Puri, 1981 

Vertical coordinate σ=p/ps 

A new geopotential variable 
 

System of linearized equations describing osclillations (u’,v’,h’) 
superimposed on a basic state of rest with T0(σ): 

  

P =!+ RT0 ln(ps ) h ' = P / g
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2 Derivation of 3D normal mode functions

The derivation of 3D normal modes presented in this section
follows KP981 and the reader is referred to the original pa-
pers for any missing details. Note that the notation is some-
what different.180

2.1 Model of the atmosphere

As a model of the atmosphere, we deal with the tradi-
tional hydrostatic baroclinic primitive equation system on a
sphere, customarily adopted for numerical weather predic-
tion (Kasahara, 1974). The model describes the time evolu-185

tion of eastward and northward velocity components (u
′
,v

′
)

and geopotential height as functions of longitude, λ, latitude,
ϕ, vertical coordinate, σ, and time t. The σ coordinate is de-
fined by

σ =
p

ps
, (1)190

where p and ps denote the pressure and surface pressure, re-
spectively (Phillips, 1957).

Although the atmospheric model is nonlinear, we are in-
terested in small-amplitude motions around the basic atmo-195

sphere at rest. Therefore, we can deal with a linearized adi-
abatic and inviscid version of the model. Solutions of such
a system with appropriate boundary conditions are referred
to as normal modes (Lamb, 1932). It should be noted that
we are dealing with free oscillations instead of forced os-200

cillations such as atmospheric tides (Chapman and Lindzen,
1970).

A new geopotential variable introduced by KP1981 ac-
counts for the fact that the surface pressure ps varies due to
topography and it is defined as205

P = Φ+RT0 ln(ps) , (2)

where Φ= gz. Here, z denotes the height corresponding
to the hydrostatic pressure and g the Earth’s gravity. Also,
T0(σ) denotes the globally averaged temperature at a given
σ level and R the gas constant of air. It is convenient to in-210

troduce a modified geopotential height h
′
= P/g in the sub-

sequent development.
The system of linearized equations describing oscillations

(u
′
,v

′
,h

′
) superimposed on a basic state of rest with temper-

ature T0 as a function of σ takes the following form:215

∂u
′

∂t
− 2Ωv

′
sin(ϕ) =− g

acos(ϕ)

∂h
′

∂λ
, (3)

∂v
′

∂t
+2Ωu

′
sin(ϕ) =−g

a

∂h
′

∂ϕ
, (4)

∂

∂t

[
∂

∂σ

(
gσ

RΓ0

∂h
′

∂σ

)]
−∇ ·V

′
= 0 . (5)

Here, a is the Earth’s radius and Ω is the Earth’s rotation220

rate. Equation (5) is obtained as a combination of the conti-
nuity and thermodynamic equations after the change of vari-
able and by using the suitable boundary conditions. For de-
tails see KP1981. The boundary conditions for the system of
equations (3-5) are225

g
∂h

′

dσ
= finite at σ = 0 , (6)

g
∂h

′

dσ
+

gΓ0

T0
h

′
= 0 at σ = 1 . (7)

The static stability parameter Γ0 is defined as

Γ0 =
κT0

σ
− dT0

dσ
, (8)230

and it is a function of the globally averaged temperature on
σ levels, T0, its vertical gradient and σ.

As inferred from the work of G. I. Taylor (1936), the 3D
linearized model (3-5) can be solved by the method of sepa-
ration of the variables. It means that the vector of 3D model235

variables [u′,v′,h′]T as functions of (λ,ϕ,σ) and time t is
represented as the product of 2D motions and the vertical
structure function G(σ):

[u′,v′,h′]
T
(λ,ϕ,σ, t) = [u,v,h]T(λ,ϕ, t)×G(σ) . (9)

Three- and 2D motions are govern by two equation systems240

which are connected by particular values of a separation pa-
rameter D which is called equivalent height following Taylor
(1936). It turns out that the governing system of the 2D mo-
tions is identical in form with the global shallow water equa-
tions having the water depth of equivalent height, D. This245

system is also known as the Laplace Tidal Equations without
forcing.

2.2 Vertical structure equation

We first discuss the vertical structure functions G(σ) gov-
ern by the vertical structure equation (VSE). Solutions of250

the VSE were first investigated by physicists in connection
with the theory of atmospheric tides under various basic
state temperature profiles and upper boundary conditions.
For the tidal problems, however, solutions of VSE are calcu-
lated under specified tide generating mechanisms with a pre-255

scribed value of equivalent height corresponding to a given
wave frequency. In contrast, for normal mode problems, so-
lutions of VSE are sought for free oscillations (no forc-
ing and dissipation) that determine the values of equivalent
height and corresponding vertical functional profiles. During260

the late 1960’s Jacobs and Wiin-Nielsen (1966) and Simons
(1968) for example investigated solutions of the VSE in
pressure-coordinates based on quasi-geostrophic modelling.
Since then many investigators have examined the various as-
pects of VSE and its solutions as we shall summarize them265

briefly in the following.

The static stability parameter:  
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Derivation of NMF following Kasahara&Puri, 1981 

Solutions in terms of horizontal and vertical dependencies: 

An equation for the vertical structure and a set of equations for 2D 
horizontal motions identical in form to the global shallow water equations. 
3D and 2D motions are connected by particular values of a separation 
parameter – “equivalent depth” D.   
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The vertical structure function G(σ) is a solution of the
VSE written in the dimensionless form as

d

dσ

(
σ

S

dG

dσ

)
+

H∗

D
G= 0 , (10)

where S(σ) =RΓ0/(gH∗). Here, H∗ is a scaling constant270

with the dimension of height, and R and g are the gas con-
stants of air and gravity, respectively. We assume that S > 0
for stable stratification and a typical profile of S is shown in
Fig. 1 in the next section. The equivalent height is denoted
by D.275

Solutions of the VSE are sought under the boundary con-
ditions that no mass transport takes place through the Earth’s
surface and the model top. They are represented by

dG

dσ
+ rG= 0 where r =

Γo

To
at the bottom σ = 1 , (11)

280

σ
dG

dσ
= 0 at the model topσ = σT . (12)

Together with homogeneous boundary conditions (11) and
(12), the VSE (10) constitutes a Sturm-Liouville problem
(Hildebrand, 1958) and its properties are well-known. For
example, solutions of (10) exist only for a set of positive val-285

ues of equivalent height D as the eigenvalues, and the corre-
sponding solutions, called the eigenfunctions, are orthogonal
in the sense that

1∫

σT

Gi(σ)Gj(σ)dσ = δij , (13)

where δij = 1 if i= j and zero otherwise.290

In the atmosphere with a realistic temperature profile,
there is always one discrete solution of (10), called the ex-
ternal or the Lamb mode, with the value of D being approx-
imately 10 km. Its corresponding structure function has the
largest vertical scale with no zero crossing point in the verti-295

cal. Thus this mode represents a vertically averaged motion
and it is often referred to as barotropic mode. In addition to
this gravest mode there is a continuous or discrete spectrum
of internal modes depending on upper boundary conditions
with varying values of D all smaller than that of the exter-300

nal mode. The structure functions corresponding to the inter-
nal modes have various zero crossing points on the vertical
axis. As an example, VSFs for ERA Interim dataset are dis-
cussed in the next section. The spectrum characteristics of
VSE solutions have been investigated extensively. For exam-305

ple, Cohn and Dee (1989) showed that the nature of the mode
spectrum depends only on the behavior of the coefficients of
VSE near the top of model atmosphere.

With the objective to construct the 3D normal mode func-
tions to represent global atmospheric motions, we need to ac-310

count for both internal modes as well as the external mode.
Moreover, we need to choose the boundary conditions that

yield a discrete spectrum of internal modes by using the
same top boundary condition as adopted for NWP and cli-
mate models which we analyze. Thus, we can represent the315

spectrum of D in the following order,

D1 >D2 >D3 > ... > Dm > 0 , (14)

where the integer subscript m can be chosen as large as one
wishes to calculate depending on the solution method. The
case of m= 1 is the lowest mode which is the external mode320

corresponding to the largest equivalent height D1 and its
eigenfunction G1 has no zero-crossing point in its profile.
The remaining cases of m≥ 2 are referred to as the internal
modes and G’s have m− 1 zero-crossing (nodal) points. The
first seven and several other vertical structure functions com-325

puted for ERA Interim dataset are shown in Fig. 2. Details of
their numerical calculation are presented in Section 3.

The structure functions Gm(σ), which are normalized and
orthogonal, are said to be complete in the sense that a well-
behaved function f(σ) can be represented by a series,330

f(σ) =
∞∑

m=1

CmGm(σ) , (σT < σ < 1) , (15)

where the coefficients Cm can be obtained from the inverse
transform

Cm =

1∫

σT

f(σ)Gm(σ)dσ (16)

with the aid of the orthogonality condition (13). In reality we335

use a finite number of modes to represent f(σ).

2.3 Horizontal structure equations

After the 3D model is decomposed into the product of 2D
system and the VSE as done by (9), we have m systems
of horizontal structure equations (HSE) corresponding to m340

equivalent heights, Dm, as the eigenvalues of VSE (10).
The HSEs are identical to linearized global shallow water
equations with the depth Dm, sometimes referred to as the
barotropic primitive equations. In the following presentation,
we drop the superscript ′ and subscript m for simplicity, but345

actually we are dealing with m systems of HSEs describing
oscillations around a background state.

To write down the HSEs, we make the dependent variables
(u,v,h) and time t dimensionless as

ũ=
u√
gD

, ṽ =
v√
gD

,h̃=
h√
D

,t̃= 2Ωt . (17)350

Then, the HSEs are written as

∂

∂t
W+LW = 0 , (18)

where W denotes the vector dependent variable

W =
(
ũ, ṽ, h̃

)T
(19)

The vertical structure equation: 
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ũ, ṽ, h̃

)T
(19)

and its boundary conditions 

4 N. Žagar et al.: Normal-mode function software and applications

The vertical structure function G(σ) is a solution of the
VSE written in the dimensionless form as

d

dσ

(
σ

S

dG

dσ

)
+

H∗

D
G= 0 , (10)

where S(σ) =RΓ0/(gH∗). Here, H∗ is a scaling constant270

with the dimension of height, and R and g are the gas con-
stants of air and gravity, respectively. We assume that S > 0
for stable stratification and a typical profile of S is shown in
Fig. 1 in the next section. The equivalent height is denoted
by D.275

Solutions of the VSE are sought under the boundary con-
ditions that no mass transport takes place through the Earth’s
surface and the model top. They are represented by

dG

dσ
+ rG= 0 where r =

Γo

To
at the bottom σ = 1 , (11)

280

σ
dG

dσ
= 0 at the model topσ = σT . (12)

Together with homogeneous boundary conditions (11) and
(12), the VSE (10) constitutes a Sturm-Liouville problem
(Hildebrand, 1958) and its properties are well-known. For
example, solutions of (10) exist only for a set of positive val-285

ues of equivalent height D as the eigenvalues, and the corre-
sponding solutions, called the eigenfunctions, are orthogonal
in the sense that

1∫

σT

Gi(σ)Gj(σ)dσ = δij , (13)

where δij = 1 if i= j and zero otherwise.290

In the atmosphere with a realistic temperature profile,
there is always one discrete solution of (10), called the ex-
ternal or the Lamb mode, with the value of D being approx-
imately 10 km. Its corresponding structure function has the
largest vertical scale with no zero crossing point in the verti-295

cal. Thus this mode represents a vertically averaged motion
and it is often referred to as barotropic mode. In addition to
this gravest mode there is a continuous or discrete spectrum
of internal modes depending on upper boundary conditions
with varying values of D all smaller than that of the exter-300

nal mode. The structure functions corresponding to the inter-
nal modes have various zero crossing points on the vertical
axis. As an example, VSFs for ERA Interim dataset are dis-
cussed in the next section. The spectrum characteristics of
VSE solutions have been investigated extensively. For exam-305

ple, Cohn and Dee (1989) showed that the nature of the mode
spectrum depends only on the behavior of the coefficients of
VSE near the top of model atmosphere.

With the objective to construct the 3D normal mode func-
tions to represent global atmospheric motions, we need to ac-310

count for both internal modes as well as the external mode.
Moreover, we need to choose the boundary conditions that

yield a discrete spectrum of internal modes by using the
same top boundary condition as adopted for NWP and cli-
mate models which we analyze. Thus, we can represent the315

spectrum of D in the following order,

D1 >D2 >D3 > ... > Dm > 0 , (14)

where the integer subscript m can be chosen as large as one
wishes to calculate depending on the solution method. The
case of m= 1 is the lowest mode which is the external mode320

corresponding to the largest equivalent height D1 and its
eigenfunction G1 has no zero-crossing point in its profile.
The remaining cases of m≥ 2 are referred to as the internal
modes and G’s have m− 1 zero-crossing (nodal) points. The
first seven and several other vertical structure functions com-325

puted for ERA Interim dataset are shown in Fig. 2. Details of
their numerical calculation are presented in Section 3.

The structure functions Gm(σ), which are normalized and
orthogonal, are said to be complete in the sense that a well-
behaved function f(σ) can be represented by a series,330

f(σ) =
∞∑

m=1

CmGm(σ) , (σT < σ < 1) , (15)

where the coefficients Cm can be obtained from the inverse
transform

Cm =

1∫

σT

f(σ)Gm(σ)dσ (16)

with the aid of the orthogonality condition (13). In reality we335

use a finite number of modes to represent f(σ).

2.3 Horizontal structure equations

After the 3D model is decomposed into the product of 2D
system and the VSE as done by (9), we have m systems
of horizontal structure equations (HSE) corresponding to m340

equivalent heights, Dm, as the eigenvalues of VSE (10).
The HSEs are identical to linearized global shallow water
equations with the depth Dm, sometimes referred to as the
barotropic primitive equations. In the following presentation,
we drop the superscript ′ and subscript m for simplicity, but345

actually we are dealing with m systems of HSEs describing
oscillations around a background state.

To write down the HSEs, we make the dependent variables
(u,v,h) and time t dimensionless as

ũ=
u√
gD

, ṽ =
v√
gD

,h̃=
h√
D

,t̃= 2Ωt . (17)350

Then, the HSEs are written as

∂

∂t
W+LW = 0 , (18)

where W denotes the vector dependent variable

W =
(
ũ, ṽ, h̃

)T
(19)
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Vertical expansion of discrete data onto NMF 

Normalization factors define 
diagonal elements of 3x3 
matrix normalization matrix S   

X(!,",# )= u,v,h( )TT

X(!,",# j )= Sm
m=1

M

! Xm (!," ) "Gm ( j)

An input data vector X is defined on the horizontal 
regular Gaussian grid and vertical sigma levels at time t:   

Projection of a single data point on j-th sigma level is performed on the 
precomputed vertical structure functions G, the horizontal Hough vector 
functions in the meridional direction and waves in the longitudinal direction:  

Xm (!," )= !um, !vm, !hm( )
T
=

um
gDm

, vm
gDm

, hm
Dm

!

"
##

$

%
&&

T

The vector Xm is obtained by the reverse transform of (1):  

Xm (!," )=Sm
!1 u,v,h( ) j

T Gm ( j)
j=1

J

" (2)	  

(1)	  



Solutions of the vertical structure function 

Example of ERA Interim dataset: L60 



Solutions of the vertical structure function 

Example of ERA Interim dataset: L60 versus L21 (standard p levels) 



The horizontal structure equation  
 
describe 2D motions for vector Xm(λ,φ) every equivalent depth Dm: 

L is the linear 
differential matrix 
operator 

Xm (!," )= !um, !vm, !hm( )
T
=

um
gDm

, vm
gDm

, hm
Dm

!

"
##

$

%
&&

T

!
!t
Xm +LXm = 0
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and L is the linear differential matrix operator355

L=

∣∣∣∣∣∣∣

0 −sin(ϕ) γ
cos(ϕ)

∂
∂λ

sin(ϕ) 0 γ ∂
∂ϕ

γ
cos(ϕ)

∂
∂λ

γ
cos(ϕ)

∂
∂ϕ [cos(ϕ)()] 0

∣∣∣∣∣∣∣
, (20)

in which γ is a dimensionless parameter defined as the ratio
of shallow-water gravity wave speed and twice the rotation
speed of Earth:

γ =

√
gD

2aΩ
. (21)360

Since (18) is a linear system with respect to time, the so-
lution W is harmonic in time so that we can express W as

W
(
λ,ϕ, t̃

)
=Hk

n (λ,ϕ)e
−iνk

n t̃ , (22)

where Hk
n (λ,ϕ) represents the horizontal structure functions365

with zonal wavenumber k and meridional index n. The cor-
responding dimensionless frequency νkn also depends on k
and n.

Now, we define the global inner product as

<Wl,W
∗
m >=

1

2π

2π∫

0

1∫

−1

(
ũlũ

∗
m+ ṽlṽ

∗
m + h̃lh̃

∗
m

)
dµdλ ,

(23)370

where µ= sin(ϕ) and the asterisk ∗ denotes the complex
conjugate. Subscript l refers to a particular mode correspond-
ing to a zonal wavenumber kl and a meridional index nl.
Subscript m indicates another mode.

Then, the linear operator (20) has the following property:375

<Wl,LW
∗
m >+< LWl,W

∗
m >= 0 . (24)

This can be verified by forming relevant inner products, inte-
grating them globally, and using Green’s theorem. For details
see Platzman (1972).

By substituting (22) into (18) we find that Hl is the eigen-380

function of L such that

LHl = iνlHl , and likewise LH∗
m =−iν∗mH∗

m . (25)

Therefore, by using (22) and (25) we get from (24) that

(νl − ν∗m)<Hl,H
∗
m >= 0 . (26)

Now we discuss very important properties of the eigenval-385

ues and eigenfuctions of (20). Let us consider the following
two cases of (26):
1) The case of l =m. Because <Hl,H∗

m > becomes pro-
portional to the total energy of the linearized system that
must not vanish, we require that νl = ν∗m. Therefore, the νl390

must be real and we can drop the asterisk from the notation
of eigenfrequency.

2) The case of l $=m. Because νl $= νm, we must have <
Hl,H∗

m >= 0, meaning that Hl corresponding to νl must be
orthogonal to the Hm associated with νm which is different395

from νl.
Since the magnitude of Hl is arbitrary, we define the fol-

lowing normalization of Hm by combining the orthogonality
property:

1

2π

2π∫

0

1∫

−1

Hl ·H∗
m dµdλ= δkm , (27)400

where the right-hand side is unity if l=m, and zero other-
wise.

Because the oscillations in the longitudinal direction are
harmonic, we can express Hk

n as

Hk
n (λ,ϕ) =Θk

n(ϕ)e
ikλ , (28)405

where the meridional dependence is described by the vector
function Θk

n,

Θk
n(ϕ) =

∣∣∣∣∣∣

Uk
n(ϕ)

−iV k
n (ϕ)

Zk
n(ϕ)

∣∣∣∣∣∣
, (29)

which has three components: zonal velocity U , meridional
velocity V , and geopotential height Z , all having zonal410

wavenumber k and meridional index n. The factor i, (i =√
−1) in front of V is introduced to account for the phase

shift of π/2 of V with respect to U and Z .
By substituting (28) with (29) into (27), we find

1∫

−1

Θl ·Θ∗
m dµ=

1∫

−1

(UlUm +VlVm +ZlZm)dµ= δkm .

(30)415

This is the orthogonality condition forΘl associated with fre-
quency νl.

Various aspects of the eigensolutions of HSEs, includ-
ing the methods of solution, their asymptotic characters,
and tables of their eigenvalues (wave frequencies) and420

the eigenfunctions (meridional profiles) are discussed by
Margules (1892), Hough (1898), Dikii (1965), Flattery
(1967), Longuet-Higgins (1968), and Kasahara (1976). Be-
cause Hough (1898) was the first to solve the normal mode
problem by means of spherical harmonics, the eigensolutions425

Hk
n as defined by (28) are now referred to as Hough functions

(Siebert, 1961) or Hough harmonics.
There are two kinds of Hough functions: high-frequency

westward and eastward propagating inertio-gravity waves
(the so-called first kind solution) and low-frequency west-430

ward propagating predominantly rotational waves of Rossby-
Haurwitz type (the so-called second kind solutions). For
zonal wavenumber k = 0 the second-kind of waves do not

Xm (!,", !t )=Hn
k (!," )e!i#n

k !tSolution Xm is harmonic in time: 

With global inner product defined as Xl,Xm =
1
2!

!ul !u
*
m + !vl !v

*
m + !hl !h

*
m( )

!1

1

"
0

2!

" dµd"

functions H are expressed as Hn
k (!," ) =!n

keik! Hough harmonics 

Derivation of NMF following Kasahara&Puri, 1981 



Horizontal expansion of discrete data onto NMF 

The scalar complex coefficients χ are obtained as 

The horizontal coefficient vector Xm for a given vertical mode is  
projected onto the Hough harmonics Hn

k(λ,φ,m) as  

The subscript n indicates all meridional modes including rotational (ROT), and 
eastward and westward propagating inertio-gravity (EIG and WIG, 
respectively) modes	  

Here, µ=sin(φ).  

Equations (3-4) are the horizontal transform pair.  

Equations (1-2) represent the vertical transform pair.  

Xm (!," )= #n
k (m)Hn

k (!,",m)
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"
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R

"
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Two kinds of Hough functions 

Frequencies of spherical normal modes for different equivalent depths 

D=10	  km	   D=1	  km	  

D=100	  m	   D=10	  m	  



NMF expansion: horizontal expansion functions  
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HSFs are pre-computed for 
a given number of vertical 
modes, M 
For every m=1,…,M, i.e. for 
every Dm 
 
Meridional structure for 
Hough functions is 
computed for a range of the 
zonal wavenumbers K,  
k=-K,..,0,...,K 
and a range of meridional 
modes for the balanced, 
NROT, a range of EIG, NEIG, 
and a range of WIG, NWIG, 
modes.  
R=NROT + NEIG +  NWIG 



Expansion of 3D data onto NMF: MODES software 

#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
TOPPATH=/Users/nedjeljka/NMF/Sigma/NMF_MODES	  
#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
INSTALLDIR=$(TOPPATH)/bin	  
SHAREDIR=$(TOPPATH)/share	  
HOUGHDIR=$(TOPPATH)/hough	  
NORMALDIR=$(TOPPATH)/normal	  
VSFDIR=$(TOPPATH)/VSF	  
MAINDIR=$(TOPPATH)/main	  
LIBDIR=/usr/local/lib	  
#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  FOR	  LINUX	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
SYSTEM	  =	  LINUX	  
LAPACK_LIB=/usr/local/lib	  
ALFPACK_LIB=/usr/local/lib	  
GRIB_API_LIB=/usr/local/grib_api-‐1.9.18/lib	  
GRIB_API_INCLUDE=/usr/local/grib_api-‐1.9.18/include	  
NETCDF_LIB=/opt/local/lib	  
NETCDF_INCLUDE=/opt/local/include	  
LIBGRIB_F90=/usr/local/grib_api-‐1.9.18/lib/libgrib_api_f90.a	  
LIBGRIB=/usr/local/grib_api-‐1.9.18/lib/libgrib_api.a	  
	  
FC	  =	  gfortran	  
FFLAGS=	  -‐O3	  -‐I$(SHAREDIR)	  -‐I$(HOUGHDIR)	  -‐I$(NORMALDIR)	  -‐I$
(VSFDIR)	  -‐L$(LIBDIR)	  -‐fopenmp	  -‐I$(GRIB_API_INCLUDE)	  
LD	  =	  $(FC)	  
LFLAGS	  =	  -‐O3	  -‐fopenmp	  

Makefile and namelist controlled 
Required libraries for the input data in grib and 
netcdf format 
Input data on the Gaussian grid and model 
levels (sigma or hybrid) 
Uses LAPACK or equivalent  
Preparation steps requires computation of the 
stability profile 
Five executables which are run in subsequent 
steps:  
•  Preparation of the horizontal grid 
•  Computation of the vertical structure 

functions 
•  Computation of the horiozntal structure 

functions 
•  Projection 
•  Filtering of selected modes to physical space 



Expansion of 3D data onto NMF: MODES software 

#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
TOPPATH=/Users/nedjeljka/NMF/Sigma/NMF_MODES	  
#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
INSTALLDIR=$(TOPPATH)/bin	  
SHAREDIR=$(TOPPATH)/share	  
HOUGHDIR=$(TOPPATH)/hough	  
NORMALDIR=$(TOPPATH)/normal	  
VSFDIR=$(TOPPATH)/VSF	  
MAINDIR=$(TOPPATH)/main	  
LIBDIR=/usr/local/lib	  
#	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  FOR	  LINUX	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
SYSTEM	  =	  LINUX	  
LAPACK_LIB=/usr/local/lib	  
ALFPACK_LIB=/usr/local/lib	  
GRIB_API_LIB=/usr/local/grib_api-‐1.9.18/lib	  
GRIB_API_INCLUDE=/usr/local/grib_api-‐1.9.18/include	  
NETCDF_LIB=/opt/local/lib	  
NETCDF_INCLUDE=/opt/local/include	  
LIBGRIB_F90=/usr/local/grib_api-‐1.9.18/lib/libgrib_api_f90.a	  
LIBGRIB=/usr/local/grib_api-‐1.9.18/lib/libgrib_api.a	  
	  
FC	  =	  gfortran	  
FFLAGS=	  -‐O3	  -‐I$(SHAREDIR)	  -‐I$(HOUGHDIR)	  -‐I$(NORMALDIR)	  -‐I$
(VSFDIR)	  -‐L$(LIBDIR)	  -‐fopenmp	  -‐I$(GRIB_API_INCLUDE)	  
LD	  =	  $(FC)	  
LFLAGS	  =	  -‐O3	  -‐fopenmp	  

& vsfcalc_cnf  
        stab_fname    =   'stability_L60.data’, 
        vgrid_fname     =    'sigma_levels_L60.data’,        
        vsf_fname     =    'vsf_L60.data’,         
        equiheight_fname  =    'equivalent_height_L60.data',         
        num_vmode  = 60,               
        mp    = 60,  
        hstd   = 8000.0d0,          
        suft    = 288.0d0,         
        given_stability      = .true.,         
       ocheck    = .true.,       
/  

&normal_cnf_inverse 

    nx          = 512,     

    ny          = 256,     

    nz          = 56,     

    coef3DNMF_fname = 'Houghcoeff_’,     

    inverse_fname   = ' Inv_’,     

    inv2hybrid      = .false.,     

    ps_fname    = ' Ps_’,     

    meant_fname    = 'Tmean_’,     

    saveasci        = .true.,     

    afname          = ’Inverse_ascii_’,    

    aformat         = '(512E16.4,1x)',  

/ 

& filter_cnf 
        eig_n_s         = 1,         
        eig_n_e         = 70,         
        wig_n_s        = 1,         
        wig_n_e        = 70,         
        rot_n_s          = 2,         
        rot_n_e          = 70,         
        kmode_s        = 100,         
        kmode_e       = 85,         
        vmode_s       = 410,         
        vmode_e       = 70, 
/ 



NMF software structure: grid and vsf namelists 

& gaussian 
        N = 256,  
        gauss_fname = 'gauss256.data’,      
/  
	  

& vsfcalc_cnf  
        stab_fname    =   'stability_L60.data’, 
        vgrid_fname     =    'sigma_levels_L60.data’,        
        vsf_fname     =    'vsf_L60.data’,         
        equiheight_fname  =    'equivalent_height_L60.data',         
        num_vmode  = 60,               
        mp    = 60,  
        hstd   = 8000.0d0,          
        suft    = 288.0d0,         
        given_stability      = .true.,         
       ocheck    = .true.,       
/  



NMF software structure: hsf namelists 

&houghcalc_cnf 
        szw       =  0,       
        ezw       =  200,         
        maxl       =  70,          
        my          =  256, 
        freq_fname      = 'freq.data', 
        ocheck          = .true., 
/ 	  

& meridional_grid 
   ygrid_fname = 'gauss256.data’,  
/  
 
& vsf_cnf 
    equiheight_fname  = 'equivalent_height.data’, 
    num_vmode   = 43, 
/  

&	  output	  
	  	  	  	  	  	  	  	  output_gmt	  	  	  	  	  =	  .false.,	  
	  	  	  	  	  	  	  	  ofname_gmt	  	  	  =	  'hough_gmt’,	  
	  	  	  	  	  	  	  	  ofname_bin	  	  	  	  	  	  =	  ’hough',	  	  
	  	  	  	  	  	  	  	  bin_combine	  	  	  	  	  =	  'zonal’,	  
/	  	  
	  



NMF software structure: projection namelists 

& normal_cnf 
    nx           = 512, 
    ny           = 256,         
     nz          =  56, 
    nstep      =   1, 
    coef3DNMF_fname = 'Hough_coeff_’, 
    output_3DNMF    = .true.,     
    saveps          = .true.,    
    savemeant       = .true., 
    ps_fname        = 'Ps_’,     
    meant_fname     = 'Tmean_’, 
    saveasci            = .true., 
    afname              = 'Indata_’,     
    aformat             = '(512E20.6,1x)', 
/ 

& time 
        datetype        = 'yyyymmddhh’,         
        syear           = 2007,         
        smon            =   07,         
        sday            =   01,         
        shour           =   12,         
        smins           =   00,      
        ssec            =   00,         
        slen            =   00,        
        eyear           = 2007,        
        emon            =   07,         
        eday            =   01,         
        ehour           =   12,        
        emins   =   00,     
        esec    =   00,     
        elen    =  00,     
       dt      = 86400, 
/  
& input_data 
    dataformat_input = 'grib’,     
    orig        = 'ECMWF’,     
    zgrid_type  = 'hybrid’     
   ifile_grib_head(1)   =  'erai_N128_’     
/  
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NMF representation of ERA Interim dataset 

K=200;  
N=70, R=210  
M=45 

30-year period between 
1980 and 2009 
 
12 UTC time 

About 10% of wave 
energy in IG modes ó 
1/3 of circulation  

Climatological energy distribution 



NMF representation of ERA Interim dataset 

K=200;  
N=70, R=210  
M=45 

30-year period between 
1980 and 2009 
 
12 UTC time 

Spectra for various balanced modes   



Scale-dependent climatological distribution of 
atmospheric total energy  

Based on 30-year 
period between 
1980 and 2009 
 
12 UTC time 

Up to 10% of 
wave energy in 
IG modes ó 1/3 
of circulation  
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Figure 7. Ratio of balanced (red line) and inertio-gravity (blue
line) energy and total energy in each zonal wavenumber. Averaging
is performed for 30-year period and for all (m,n).
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Application of the normal mode representation 
Modal-space diagnosis of the vertical energy propagation 
by the Kelvin waves 

DART/CAM ECMWF NCEP/NCAR NCEP 

vertical mode 

d
ay

s 
in

 J
u

ly
 2

0
0

7
 

Evolution of the zonal wavenumber k=1 Kelvin wave in July 2007, filtered for periods shorter 
than 36 hours.  The best agreement between the datasets exists for the Kelvin wave.  

Zagar et al., MWR,  2009 



Application of the normal mode representation 

DART/CAM ECMWF NCEP/NCAR NCEP The zonal wind 
component in the Kelvin 
wave at subsequent 
days (left) shows the 
downward phase 
propagation (upward 
energy propagation).  

 

The difference in the depth 
of the atmosphere in 
DART/CAM and NCEP/NCAR 
on one hand and ECMWF 
and NCEP on the other 
appears to be one reason 
for different propagation 
properties.   

(Zagar et al., 2009) 

Modal-space diagnosis of the vertical energy propagation 
by the Kelvin waves 



NMF software structure: filtering namelists 

&normal_cnf_inverse 
    nx          = 512,     
    ny          = 256,     
    nz          = 56,     
    coef3DNMF_fname = 'Houghcoeff_’,     
    inverse_fname   = ' Inv_’,     
    inv2hybrid      = .false.,     
    ps_fname    = ' Ps_’,     
    meant_fname    = 'Tmean_’,     
    saveasci        = .true.,     
    afname          = ’Inverse_ascii_’,    
    aformat         = '(512E16.4,1x)',  
/ 

& filter_cnf 
        eig_n_s         = 1,         
        eig_n_e         = 70,         
        wig_n_s        = 1,         
        wig_n_e        = 70,         
        rot_n_s          = 2,         
        rot_n_e          = 70,         
        kmode_s        = 100,         
        kmode_e       = 85,         
        vmode_s       = 410,         
        vmode_e       = 70, 
/ 



NMF representation of ERA Interim dataset 

Zonally-averaged 
zonal winds, July 

Balanced part 

IG part 



NMF representation of ERA Interim dataset 

Zonally-averaged zonal 
winds, January 

Balanced part 

IG part 



Climatological circulation in the tropics 
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Figure 11. Meridional winds along the Equator in (a, b) January and (c, d) July. (a, c) All modes and (b, d) unbalanced modes. Spacing is
every 2ms−1 with positive values (northerly wind) in shades of magenta and negative values (southerly wind) in the blue shades. Wind are
averaged in the belt between 5 degrees off the Equator (14 Gaussian grid points).

Figure 12. Climatological horizontal winds in January on ERA Interim model level 31 (about 229 hPa) for (a) the total circulation, (b)
balanced circulation and (c) unbalanced circulation. Wind intensity is shown by both colours and length of the wind vectors. Colour bar (in
ms−1) is the same for the total circulation and for the balanced circulation (every 1ms−1), whereas the unbalanced winds are coloured with
a spacing every 0.5ms−1.

Geosci. Model Dev., 8, 1169–1195, 2015 www.geosci-model-dev.net/8/1169/2015/
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Figure 13. As in Fig. 12 but for the model level 51 (about 909 hPa).

Figure 14. As in Fig. 12 but for July.

cific and Indian oceans together with the zonal balanced
winds constitute the total circulation with south-easterly di-
rections (Fig. 12); the opposite applies in July when the IG
component enhances cross-equatorial circulation by adding
the northern component to balanced easterlies over Indone-
sia and Indian oceans (Fig. 14). A dominant feature of the IG
circulation in July is an almost purely divergent flow over the
south-east Asian monsoon region. Another outflow region is
found over South America.
The IG circulation close to 900 hPa is comparable in mag-

nitude to the balanced flow. Climatological meridional winds
in the central and western Pacific and Indian Ocean in ERA
Interim come mainly from the unbalanced flow, especially
in January (Fig. 13). Thus, the ITCZ location is defined by
the IG circulation. The extent to which this result is associ-
ated with the model dynamics and physics, i.e. the first-guess
field in data assimilation in comparison to observations and
the multivariate coupling imposed through the 4-D-Var in the
ERA Interim system, is a complex question beyond the scope
of this paper.

Finally, we show an example from the climatology of the
most studied mode of tropical dynamics, the Kelvin mode.
In Fig. 16 the KW is shown at two levels; besides the upper
troposphere level 31 shown in other figures, we also show
model level 27 closer to the tropical tropopause, where the
KW amplitude is largest in July. The prevalent feature of
KW climatology is the zonal wave number k = 1 structure
with a negative geopotential perturbation in the upper tropo-
sphere over the Indian Ocean and equatorial Africa (easter-
lies) and a positive perturbation over the most of the Pacific
(westerly winds). There is approximately an opposite picture
in the lower troposphere over the Pacific with the strongest
easterlies over the western and central Pacific (not shown).
The climatological KW signal is very weak over the Atlantic
and South America in the upper troposphere. This suggests
that the climatological picture of the tropics as envisaged by
Gill (1980) and implemented in many reduced models of the
tropics (e.g. Majda et al., 2004) applies best to the western
Pacific, where the low-level easterlies in the ERA Interim
are due to the KW response to the heating over Indonesia.
A steady-state response from idealized models including the

www.geosci-model-dev.net/8/1169/2015/ Geosci. Model Dev., 8, 1169–1195, 2015
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Real-time modal view of ECMWF forecast 
h"p://meteo.fmf.uni-‐lj.si/MODES	  



Modal representation of the MJO 

Regression between the MJO index and ERA Interim 
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patterns, we perform a linear regression between the MJO index Mi(t) and modal ex-

pansion coefficients χk
n(m, t) as follows. First we compute the mean values of the time

series of the expansion coefficients and the MJO index and denote them as χk
n(m) and

Mi, respectively. The regression is then computed as

Rk
n(m, τ) =

1

N − 1

∑N
t=1

[ (
χk
n(m, t)− χk

n(m)
) (

Mi(t, τ)−Mi

) ]

V ar
(
Mi

) . (5)

Here, τ denotes the time lag while V ar
(
Mi

)
denotes the variance of Mi. The obtained

complex coefficient Rk
n(m, τ) describes the projection of the global circulation associated

with the MJO, represented by the multivariate indexMi, in terms of balanced and inertio-

gravity modes. Any mode constituting MJO is defined by the set of modal indices (k, n,m)

and can be projected back to physical space. The global variance associated with the MJO

can be computed directly from the complex Rk
n(m, τ) coefficients as

Vk
n(m, τ) = gDmRk

n(m, τ)[Rk
n(m, τ)]∗ (6)

where the operator ∗ denotes the complex conjugate [Žagar et al., 2015].69

3. Balanced and inertio-gravity components of the MJO

The MJO regression patterns are shown in Fig. 1 for a model level close to 150 hPa.70

The circulation associated with the RMM1 index consists of enhanced easterlies over the71

Maritime continent and enhanced westerlies over the eastern Pacific, south America and72

equatorial Atlantic. In the RMM2 regression pattern, the easterlies are shifted to the73

western Pacific and somewhat weaker than in the RMM1 case. The westerly winds are74

found over the equatorial Atlantic, Africa and Indian ocean. The overall structure is75

similar to the two leading EOFs representing the MJO in Wheeler and Hendon [2004].76
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Modal representation of MJO 

Quantification of the role of various modes in MJO and its teleconnections 
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Summary 

•  Representation of the global circulation and mass fields in 
global NWP and climate models in terms of the normal modes 
of the Navier-Stokes  equations offers an alternative and  
physically attractive approach to the diagnostic of some 
properties of the models 

•  A new software for the representation of global atmospheric 
energy, MODES, has been developed under the ERC funding 
and it is available to the atmospheric research community 

•  MODES provides possibility to study circulation changes in 
the coupled climate models in relation to the (un)balanced 
dynamic. Unbalanced circulation is climatologically small and 
difficult to diagnose, but it is critical for understanding 
atmospheric variability   



Thank you very 
 
much for your  
 
attention!  
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