



# Simulated Arctic sea ice and ocean change

# Alexandra Jahn

### University of Colorado Boulder Atmospheric and Oceanic Sciences & Institute for Arctic and Alpine Research



# Simulated Arctic sea ice and ocean changes

- Using results from free-running coupled global earth system models → Forced only by Greenhouse gas emission scenarios and solar forcing
- From CMIP5 (Climate Model Intercomparison Project) and CESM1.1 (Community Earth System Model) ensembles; also come figures from other recent large ensembles (CanESM, MPI)



### Simulated Arctic Sept sea ice extent changes



All CMIP5 models and CESM LE simulate a sea ice extent loss in September, in agreement with observations

But, there is a large spread between models And no line matches the observations exactly Why is that? Model bias <u>and</u> Internal variability

# What is Internal variability?



# What is a model bias?

The model does not correctly simulate the feature of interest  $\rightarrow$  suggests something is wrong or missing in the model

Internal variability makes detecting a bias difficult, as we need to compare with observations to detect a bias. But with ensembles, we can identify a bias.



## Comparing one realization against many



[million km<sup>2</sup> /decade]

consistent with observations) or outside the model spread (model bias)?

### Comparing one realization against many: CMIP5



- Observations are consistent with the CMIP5 35yr ensemble sea ice trends and the CESM LE trends
- Mean state in several models is biased

# Finding signals in the noise







35 year CMIP5 sea ice trends (1979–2013) larger than observed only occur in CMIP5 model runs with larger than observed global warming trends → suggests that the sea ice sensitivity is too low in

climate models

But: Both sea ice trends and global warming have a large imprint of internal variability as well  $\rightarrow$  there are several possible sea ice trends for a given warming trend that occur in an ensemble, even for 38 yr trends

0.05 0.10 0.15 0.20 0.25 0.30 0.35 Temperature Trend [°C/decade]

# Simulated Arctic sea ice trends: Sea ice extent is declining in all months, but largest decrease in summer and fall



CESM LE trends have a low ice-loss bias in the winter and June and July

#### 30000 Sea ice volume [Million km<sup>3</sup>] **Ensemble Members Spring** 25000 Ensemble Members Fall Satellite Spring 20000 Satellite Fall 15000 10000 Area mask 5000 Satellite ice volume courtesy of R. Kwok 0 1920 1950 1980 2010 2040 2070 2100 regression analysis (b) (submarine record) ICEsat CS-2 Sea ice thickness started to decline already in 1980s, in agreement Area mask 35 with submarine data Ê 3.0 g 2.5 The CESM LE winter/spring sea ice thick 5 volume is too large compared to remote sensing data Kwok and Cunningham, 2015

2010

1970

1980

1990

year

2000

### Simulated Arctic sea ice change: Sea ice volume is also declining

### What does the future hold for Arctic sea ice?

More ice loss is to be expected, in all months. But how much depends on emission scenario





Year-to-year variability can be expected to increase, based on models

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

### Will we seen an Ice-free Arctic Ocean?



### **Probabilities of Sept. ice-free conditions**

#### Probabilities of ice-free conditions in a given year



# Density profile over the central Arctic (ocean depth > 500 m, from CESM LE)





- Surface ocean is getting less dense.
- Late 20<sup>th</sup> century density change is driven by salinity
- 21<sup>st</sup> century change is from freshening and warming, with warming impact getting more and more important as ice is lost

Courtesy of Patricia DeRepentigny, CU Boulder

### Arctic Freshwater export (based on CESM LE)



- A detectable shift of these FW exports compared to pre-industrial internal variability does not occur in all members before ~2030
- A clear emergence from the background state into a new regime does not occur until the end of the 21<sup>st</sup> century in all members.
- For observations, this means just because we haven't seen a shift (e.g., Davis Strait liquid) it wont be changing in the (near) future

SHIFT YEARS & EMERGENCE YEARS TIME SPREAD FOR CESM LE ENSEMBLE MEMBERS



Laiho and Jahn, in preparation

# Final thoughts



- Model simulations help us place observations into a longer term context
- Model biases tells us something about processes and relationships we do not (yet) understand/know (well enough)
- Model simulations tell us something about the possible future evolution of climate we can not otherwise predict, due to the nonlinear climate system