Radiative forcing and climate response in the stable polar atmosphere

Mark Flanner University of Michigan

Photo: Eric Kort

FIG. 2. Winter statistics for (a) frequency of all inversions, (b) frequency of elevated inversions, (c) median inversion depths, and (d) median temperature difference across the inversion layer.

Radiative forcing (IPCC) is calculated at the tropopause or top-of-atmosphere

Rationale: Turbulent mixing in the troposphere will distribute energy throughout the troposphere

RF in the presence of an inversion

 OLR can increase with a GHG increase, exerting negative RF at the top-ofatmosphere

Negative RF from water vapor

 We can see this effect in water vapor radiative kernels used widely to decompose climate feedbacks

Small or negative RF from wholecolumn CO₂ over polar regions

In this case, negative RF is due to the upper troposphere / lower stratosphere being warmer than the surface

An analytical demonstration

$$I_{\lambda}^{\uparrow}(\infty) = B_{\lambda}[T_s] \mathcal{T}_{\lambda}^* + \int_0^{\infty} B_{\lambda}[T(z)] \frac{\partial \mathcal{T}_{\lambda}(z,\infty)}{\partial z} dz$$

Questions raised

- How does the climate system respond to GHG increases occurring in tropospheric temperature inversion environments?
- Is the standard concept of RF even useful for these environments (i.e., polar winter)?
- Could the surface actually *cool* from a targeted increase in short-lived GHG?
 - Possible geoengineering strategy?

An extreme experiment

 Fully-coupled CESM simulations (B_1850) with and without a GHG perturbation occurring only within the wintertime polar near-surface inversion layer

Control, 66-90N DJF

Control, 66-90S JJA

Mean altitude above surface [m]

0

Ž00

210

220

230

Temperature [K]

240

MODTRAN

Radiative forcing in CESM

- Instantaneous RF:
 - Negative at the TOA and tropopause
 - Positive at the surface
- Effective radiative forcing (diagnosed with fixed-SST simulations):
 - Negative

Flanner et al (2018, GRL)

Temperature response

- Troposphere *cools* in vicinity of the gas increase
 - Emission from the layer increases more than absorption by the layer
 - It is the warmest point of the surface-atmosphere column
- Surface *warms*
 - Increase in downwelling longwave flux outweighs the impact from a cooling troposphere
 - A unique response facilitated by the stable atmosphere

Surface temperature response

- Surface warms, despite negative ERF and tropospheric cooling
- Reduced sea-ice in the Arctic amplifies its response relative to Antarctic
- Surface RF is weaker over central Antarctica and Greenland because perturbation occurred above the inversion peak
- Temperature inversion weakens as the simulation progresses

Flanner et al (2018, GRL)

Stability plays a key role in T_s response

- Arctic surface temperature response to 2×CO₂ is reduced when boundary-layer mixing is artificially increased (*Bintanja et al*, 2011)
- Surface inversion becomes progressively weaker in the future, thus reducing the amplifying effect of a stable atmosphere

Bintanja et al (2011, Nature Geosci.)

Stability plays a key role in T_s response

 Response of the net surface energy budget and temperature to sea-ice loss is largest during winter, when stability is high (*Deser et al*, 2010)

FIG. 4. Seasonal cycles of air temperature (°C; dotted curve) and precipitation (mm day⁻¹; dashed curve) responses area averaged over (a) the Arctic Ocean and (b) the high-latitude continents (65° – $80^{\circ}N$; 60° – $300^{\circ}E$). The solid curve in both (a) and (b) shows the sum of the turbulent and longwave fluxes area averaged over the Arctic Ocean (W m⁻²). SIC changes are indicated by the gray bars (scale as in Fig. 3, not shown).

FIG. 2. Bimonthly Arctic (top row) sea ice thickness (Δ SIT; m) and (second row) concentration (Δ SIC; %) differences (2080-99 minus 1980-99) from CCSM3. Bimonthly (third row) turbulent energy flux (Δ SH + LH), (fourth row) longwave radiative flux (Δ LW), and (bottom row) shortwave radiative flux (Δ SW) responses to sea ice cover changes. Fluxes (W m⁻²) are positive upward.

Deser et al (2010, J. Climate)

Stability plays a role in cloud response

 Where sea-ice is lost, low clouds form over newly open water in autumn (when stability is low) but not (much) in other seasons, when inversions are still present (*Kay and Gettelman*, 2009)

Kay and Gettleman (2009, JGR)

Stability plays a key role in T_s response

• Even further back... **Convective decoupling** of the surface and troposphere during nuclear winter results in strong warming near the tropopause and **cooling at the surface**, **despite positive RF** (*Turco et al*, 1983, *Cess et al*, 1985)

Fig. 3. Northern Hemisphere troposphere and stratosphere temperature perturbations (in Kelvins; $1 \text{ K} = 1^{\circ}\text{C}$) after the baseline nuclear exchange (case 1). The hatched area indicates cooling. Ambient pressure levels in millibars are also given.

Another example of ill-behaved forcing: Black carbon in the Arctic atmosphere

- Black carbon exerts positive TOA RF
 - It warms the atmosphere
- But when located sufficiently high, it cools the surface
 - Less sunlight at the surface and **insufficient coupling** to mix the heat down

Conclusions

- Under highly stable conditions (Arctic winter)...
 - ERF can fail to predict the correct sign of surface temperature response to a GHG increase
 - Surface RF governs surface temperature change more than TOA RF or ERF
 - Perturbations to the surface energy budget drive disproportionately large surface temperature change
- Simulated polar surface responses to external forcings are sensitive to boundary layer representation
- Polar winter stability will decrease with climate warming
- Injecting short-lived GHGs into polar inversion layers would fail to cool the planetary surface, *despite* exerting negative ERF and cooling the inversion layer