Climate and Connectivity in the Coral Triangle

Enrique Curchitser Rutgers University curchitser.ocean@gmail.com www.esm.rutgers.edu Joanie Kleypas National Center for Atmospheric Research kleypas@ucar.edu www.ctroms.ucar.edu

. . . .

Reef conservation in the Coral Triangle?

Motivation:

Coral reefs are degrading quickly and a major reason for the degradation is a warming and more acidic ocean. However, they have tremendous value to humans and should be conserved

Problem:

Conservation efforts require an understanding of:

- 1. The exposure and sensitivity of coral reefs to climate change
- 2. The ability to recover, e.g. recolonizing via larval-dispersal following a bleaching event

Our approach:

Use models to inform conservation strategies that allow reefs to survive into the future

Our Coral Triangle World

- Mechanisms
- Regional differences

Coral Bleaching

- Past analysis
- Future projections

Oceanography

- Circulation changes
- Effect of scale

Turbulent mixing

- Barriers to larval dispersal

Biogeochemistry

- Productivity
- Ocean acidification

Connectivity

- Spratly Islands connectivity
- CT connectivity and climate
- Sensitivity of larval biology
- Life history strategies
- Genetics?

Metapopulation Modeling

- Competition
- Disturbance (e.g. bleaching)

Joanie Kleypas Fred Castruccio Diane Thompson

James Watson

Enrique Curchitser Malin Pinsky Liz Drinkard Sarah Lietzke

Protecting nature. Preserving life.

Elizabeth Mcleod Rod Salm

Lisa McManus Rusty Brainard Simon Levin Roberto Venegas And others!

One challenge: Complex oceanography

NCAR

Castruccio et al., 2013, J. Geophys. Res.

Many opportunities: Complex oceanography

Castruccio et al., 2013, J. Geophys. Res.

Regional Ocean Model System

The Coral Triangle Implementation

CT-ROMS Specifications Horizontal res.: 5 km Vertical res.: 50 levels Time step: 90 sec Boundary cond.: MERRA, SODA, CESM

NCAR

Computation: 40,000 core hours/yr **Data storage:** 600 GB/yr (daily averages)

Experiments

Experiments	Years	Atm. Forcing	Ocean Forcing
Development run	2004-2006	MERRA	SODA
20 th Century	1960-2007	CORE2	SODA
21 st Century	1960–1979 2040–2059 2080–2099	CESM2 – RCP8.5	CESM2 – RCP8.5
0.5 km Verde I Passage and Camotes Sea	1996–1998	CT-ROMS 5.0 km	CT-ROMS 5.0 km
BGC (w/ COBALT)		CORE2	SODA
Extended 20 th Century	1980–2016	CORE2	SODA3

Animation of daily SST, 2004-2006

Animation removed for PDF – please see: http://www.ctroms.ucar.edu/animations/daily_SST_ROMS_animation.mp4

Trends in circulation

Lietzke et al., In prep.

Attribution of transport variability

Lietzke et al., In prep.

Particle Dispersal

"Coral Connectivity"

Animation of particle tracking in CT-ROMS for 60 days.

Animation removed for PDF please see: http://www.ctroms.ucar.edu/ animations/float_animation. mp4

Lagrangian Coherent Structures

Conduits & Barriers for Transport

NOAA/NOS 5/16/17

Castruccio et al., 2013, J. Geophys. Res.

Particle Transport

Coral Larval Connectivity

Animation courtesy of Scott Pearse NCAR Viz Lab 3D Visualization of particle dispersal within Indonesian Throughflow north of Lifamatola Strait Animation removed for PDF – please see: https://youtu.be/rXKmyyVIoxo

For specific regions: Very high-resolution model domains

VIP Specifications Horizontal resolution: ~0.5 km Vertical resolution: 50 layers Boundary cond.: CT-ROMS Time frame: 1996-1998

Drenkard et al., In prep.

High-resolution ROMS model of Verde Island Passage

<u>Objective</u>

What ocean mechanisms modulated VIP SST in 1998?

Model specifications

- ~500m resolution; 50 layers
- Time frame: 1996-1999
- Atmospheric Forcing: MERRA
- Boundary Conditions: CT-ROMS
- Rivers and Tides

NCAR

Winds directly influence surface currents

SSH gradient drives upper transport

Average zonal (model-relative) velocity for JJAS 1999

SSH gradient drives upper transport

Average zonal (model-relative) velocity for JJAS 1999

SSH gradient drives upper transport

Average zonal (model-relative) velocity for JJAS 1999

The role of internal tides

Resolving internal tides:

ITs increase mixing and deliver cold water from depth

Internal tides interact with surface processes to enhance or dampen upwelling signal

2

Maximum degree heating weeks for 1998

Model resolves spatial heterogeneity in maximum DHW signal

Conservation in the Coral Triangle

Modeling to understand ...

Temperature

- Past patterns
- Future projections

Connectivity

- Sources & sinks
- Populations
- Future changes?

In progress

- Biogeochemistry
 - Carbonate
 chemistry
 - Productivity
- Population
 Dynamics

CAN WE IDENTIFY CLIMATE REFUGIA FOR CORAL REEFS? Less bleaching – Faster recovery – Higher connectivity

CT-ROMS: Degree-Heating-Weeks (DHW)

Animation of DHW, 1960-2005

Animation removed for PDF – please see: http://www.ctroms.ucar.edu/animations/DHW_method_2_animation.mp4

Warming Trend: 1960-2008

Surface

Warming Trend: 1960-2008

Refugia at depth?

Warming Trend: 1960-2008

Regions of low heat stress refugia?

Kleypas et al. 2015 GCB

Future rate of warming in the Coral Triangle

High emissions scenario (CESM RCP 8.5)

Rate of warming (°C per decade)

Note the spatial variability in the warming

Kleypas et al. in prep.

A century of warming with depth

1960-1979 to 2080-2099

Kleypas et al. in prep.

Future Bleaching in the Coral Triangle

High emissions scenario (RCP 8.5)

Kleypas et al. in prep.

Future Bleaching in the Coral Triangle

High emissions scenario (RCP 8.5)

Kleypas et al. in prep.

Reef recovery through re-seeding

Coral spawning

Larval dispersal

CT-ROMS: Potential Connectivity

NCAR

Watson et al. 2012

CT-ROMS: Potential Connectivity

Watson et al. 2012

Methods

NCAR

Spatio-temporal

100°E 110°E

120°E

130°E

140°E

NCAR

Results: Important source and sink regions

Thompson et al. in prep.

Results: Subpopulations

Genetics-based subpopulations of multiple invertebrate species

Carpenter et al. 2011

Results: Subpopulations

NCAR

Thompson et al. in prep.

Thermal Stress Threshold

Based on local temperature

Kleypas et al. 2016 GCB

2

NOAA/NOS 5/16/17

Larval transport across temperature gradients

CHANGE in thermal stress threshold due to Potential Connectivity, 30-days

Realized Connectivity

Knowledge Gained

Physics:

- For reefs in the Coral Triangle, we need to understand a wide range of scales – from internal tides to interocean exchange
- The ocean is 3D and turbulent!
- In this region there is significant heterogeneity

Biology:

- Warming over the last 50 years has varied with region and depth
- Future warming is likely to be severe in most regions
- The environmental heterogeneity of the CT (temperature and connectivity) shows promise that some refugia may persist into the future

Future Work

Multiply nested domains down to the reef scale

Ocean acidification and productivity

Extending these capabilities to other reef regions where data are available (e.g., US Pacific Is.)

Climate and Connectivity in the Coral Triangle

Thank You

Enrique Curchitser Rutgers University Joanie Kleypas National Center for Atmospheric Research kleypas@ucar.edu

. .

http://www.ctroms.ucar.edu/