Contributions of Global cloud-resolving model simulations to YOTC

M. Satoh

Center for Climate System Research, Univ. of Tokyo Research Institute for Global Change(formery FRCGC), JAMSTEC

Courtesy of H. Yamada (JAMSTEC) and W. Yanase (UT) T. Nakazawa (MRI), H. Fudeyasu and P. Liu (IPRC) K. Oouchi and H. Taniguchi, H. Tomita and T. Nasuno (JAMSTEC) T. Inoue & T. Seiki (CCSR), H. Miura (CSU)

> YOTC Implementation Workshop 13-15th July 2009 East –West Centre, University of Hawaii

Contents

- NICAM overview and some recent results
- TC Fengshen simulations: June 2008
- 3.5km mesh simulations and satellite comparisons
- Contributions of NICAM to YOTC

Experiments, plan and suggestions

NICAM outlines

•Outline of NICAM

Miura et a.(2007, Science)

- Nonhydrostatic ICosahedral Atmospheric Model
- for Global Cloud-Resolving Simulations (Satoh et al., 2008, JCP)
- Development since 2000 (Tomita and Satoh 2004, Fluid Dyn. Res.)
- First global dx=3.5km run in 2004 (Tomita et al. 2005, GRL)
- •MJO and Tropical Cyclones
- •High resolution simulations comparable to satellite observations

Realistic MJO simulation

Miura et a.(2007, Science), Nasuno et al.(2009, JMSJ),

NCEP/CPC IR

NICAM 7km, OLR

MJO and Tropical cyclone

NICAM reasonably produced not only the large-scale circulation, such as the MJO, but also the embedded mesoscale features, such as TC rainbands.

Surface rain rate (mm hour⁻¹) by TRMM-TMI

Surface rain rate (mm hour⁻¹) by NICAM

Fudeyasu et al. 2008 GRL

Precipitation distribution over south Asia

Oouchi et al. (2009, Geophys. Res. Lett.)

Taniguchi et al. (2009, JMSJ, submitted)

TC cyclogenesis in Indian Ocean is generally captured with ISV using stretch-NICAM Yanase et al. (2009, JMSJ, submittd)

TC FENGSHEN: JUNE 2008

FIELD OBSERVATION AND NICAM PRELIMINARY SIMULATIONS

TC Fengshen: June 2008

Simulation of Fengshen (2008):

- Initialization 3 days before genesis
- Typhoon development and track similar to the observation
- Plan of more simulations with a higher resolution (dx=dy=3.5 km)

PALAU-2008 Field Experiment

EXAMPLE: SYNOPTIC EVENT OF INTEREST JUNE/JULY 2008 MJO/Kelvin Waves -> E.Pac ITCZ -> TCs -> Gulf Surge -> NA Monsoon -> Flash Floods AZ, NM Contributed by J. Gottschalck/NCEP & M. Wheeler/ABOM

Hovmöller diagrams (5S-5N)

Eastward propagating (Kelvin) signals with westerly anomalies in mid June

Hovmöller diagrams (West Pac)

- Four westward-propagating off-equatorial disturbances.
- One grew into TY Fengshen while others didn't grow.
- Slowly eastward propagation of the whole packet, like the behavior of MRG/TD-type waves (Dickinson and Molinari 2002; Straub and Kiladis 2003)

Horizontal distribution (11-14 June)

0

-10

-20

30

40

-50

10

-20

-30

-50

Horizontal distribution (15-18 June)

Horizontal distribution (19-22 June)

Evolution of Cloud Bands (relative to pre-TC center)

LATITUDE

Meso-scale convection and vorticity at the cyclogenesis stage

LATITUDE

Mesoscale convective vortices in the mid troposphere (mainly within the fore-side cloud system)

Meso-scale convection and vorticity at the cyclogenesis stage

NICAM TC Fengshen simulation

Stretched-7km-grid; Init 12UTC 16th Jun (Genesis: 12UTC 18th)

NICAM: 12UTC 18th

NICAM: 12UTC 20th

NICAM: 12UTC 22nd

JCDAS: 12UTC 18th

JCDAS: 12UTC 20th

JCDAS: 12UTC 22nd

OBS. (MW rain, sea-level wind)

10

10

10

120

81

NICAM (rain, UV at z=10m)

19 JUN)

150

← 20 ms⁻¹

Erroneous poleward bias in ALL forecast models

Forecast Track Errors

	24	36	48	72	96	120
JTWC	108	169	206	308	658	874
CONW	115	192	262	430	703	838
AVNI	124	205	276	512	780	1005
EGRI	105	141	158	228	471	589
GFNI	165	259	354	534	791	848
NGPI	125	214	319	541	770	934
#CASES	14	14	12	11	6	6

Table 1-5: Average FTE (Homogeneous Comparison) Through Tau 120

JTWC:JTWC official forecastsCONWJTWC model consensusAVNIGFS modelEGRI:UK Met Office modelGFNIGFDN modelNGPINRL NOGAPS model

JTWC's 2008 Annual Tropical Cyclone Report (ATCR), Page 38: (http://metocph.nmci.navy.mil/jtwc/atcr/2008atcr/2008atcr.pdf)

"It is highly unusual to have all forecast guidance be incorrect, so JTWC forecasters were reluctant to go against all the models, resulting in highly inaccurate official forecasts. Immediate evaluation by the modeling community is necessary to determine the root causes of the unreliability of the dynamic models in this case."

Track forecast (init. 00UTC, 20 June)

Track forecast (init. 00UTC, 20 June)

JMA weekly ensemble (51 members) JMA typhoon ensemble (11 members) JMA GSM (20km resolution) ECMWF ensemble (51 members)

SATELLITE COMPARISONS

3.5KM MESH SIMULATIONS AND CLOUD PROPERTIES

NICAM 3.5 km mesh global simulation comparable to satellite observation

Ice cloud evaluation by split windows

Inoue et al. (2009, JGR, submitted)

NICAM SNOW PROFILE 26 Dec

Calipso/CloudSat simulated reflectivities by COSP

observation

IWP

NICAM

Iga et al. (2009, in preparation)

NICAM IWP is larger than the observed range of IWP.

IWC

NICAM CS4L100

RAVE

fvMMF

Cloud Microphysics Schemes of NICAM

- Grabowski (1998)
- NSW6 (Tomita 2008, JMSJ)
 - Single-moment 6-categories
 of water
- NDW6 (Seiki-Mitsui)
 - Double-moment 6-categories of water

Stretch-NICAM exp.

•Use of NICAM as a regional model: local-CRM: (Tomita, 2008,JMSJ)
•dx=2.5km-250km Stretch factor=100, Glevel8
•Integration: 2007.1.1.12-1.5.12
•Sensitivity to cloud microphysics scheme NSW6

CloudSat/CALIPSO

radar [dBZe] : 2007.1.2.5Z

NICAM with COSP

radar [dBZe] : 2007.1.2.5Z

qc [g/kg] : 2007.1.2.5Z

qi [g/kg] : 2007.1.2.5Z

qg [g/kg] : 2007.1.2.5Z

qr [g/kg] : 2007.1.2.5Z

qs [g/kg] : 2007.1.2.5Z

w [m/s] : 2007.1.2.5Z

NICAM Cloud Properties

Sensitivity to cloud microphysics schemes: CFADS of CloudSat/CALIPSO signals using COSP radar [dBZe]: 07010112-07010512: bin=10 CloudSat/CALIPSO

10

20

Grabowski(1998), NICAM-GCRM 3.5km (90-130E, 20S-20N)

-20

-10

radar [dBze] : 2007.1.1.00Z : bin=10

0

radar

0.02

lidar

0.04

0.00

NSW6 (Tomita 2008), stretched-NICAM dx=2.5~5km

lidar [1/km/str] : 2007.1.3.12Z : bin=10

Pilot simulations of 2-moment cloud model with Global 7km resolution.

Comparisons with satellites and further challenges. (Validation of 2-moment cloud model)

Summary

- NICAM simulations
 - MJO and ISV (Miura et al., 2007; Nasuno et al., 2009 JMSJ; Liu et al, 2009 MWR; Oouchi et al. 2009 GRL)
 - TC (Fudeyasu et al. 2009, GRL)
 - Diurnal cycle (Sato et al. 2009, J. Clim.)
 - Ensembles for ISV & TC genesis
 (Taniguchi & Yanase 2009 JMSJ)
- Evaluation using satellite data

– GMS

– CloudSat/CALIPSO & TRMM PR

Contribution to YOTC

- May 2008: TC Nargis & after
 - ISV/Northward Propagation and TC genesis
- June 2008: TC Fengshen
 - Obs. Palau2008/2010
- Experiments, plan and suggestions
 - Global 3.5 km run for a week
 - 15-25 June 2008
 - MJO Ensemble simulations 7km
 - 1 or 2 months x several runs
 - Multiscale structure and meso-scale convective systems
 - Comparison with satellite observations
 - Output data, time interval?