

Session 4: Seamless prediction and hierarchical modelling

YOTC, CAS, Beijing

May 2011

Moderator: Jon Petch

Seamless forecasting services												
Forecast lead-time												
Observations and past data	Hour	Day	Week	Month	Season	Year	Decade	Century				
							Mitigation policies					
Climate vulnerability analysis							Infrastructure planning					
						Homeland & international security						
						Adaptation strategies						
						Regulator	standards					
					Financia	al & property po	ortfolio risk mana	gement				
						Investmer	nt strategy					
			1		Aid agencies	& international	development					
					Market trading							
				Ma	iintenance plann	ing						
				Insurance/re-insurance hazards								
			Resource planning: energy, water, food									
			Operation	s planning								
	Di	sruption plannir	ng									
v	Weather warnings											
Emergency response												

Met Office

50

Expected amount of rainfall (in mm) by 0600 GMT on Friday 20 November

Forecasting the Cumbrian Floods: 17-20 November 2009

Forecast issued on 18th Nov. warned of unprecedented rainfall accumulations of up to 300mm – Red Alert

> Observed values in excess of 200-300mm

Seamless operational prediction

- All of our prediction systems have to be identical
 - Clearly nonsense (climate cf NWP resolution; extra sub-models/complexity.....)
- All of our prediction systems should use common science as far as possible/sensible, and at least aim to be traceable to one another

The Met Office modelling systems

Longer range: stratospheric resolution; oceans, earth system

- 15 days: 60 km
- Seasonal (global) 120 km (perturbed physics and new I.C run every 2 days)
- Decadal to centennial: 60 200 km
- Regional climate: 1.5 30 km

Seamless 'science' and hierarchical modelling

- Take maximum advantage of common science across scales
 - Processes and understanding
 - Functionality
 - Understanding model performance
 - ...

Outgoing Shortwave Flux (TOA) W m ⁻²												
0	179	357	536	714	893	1072						

CASCADE model output from 1.5 km UM

The diurnal cycle over West Africa (Pearson, Dixon and Parker)

Diurnal Cycle in Frequency of High Cloud (OLR<150Wm⁻²) as a function of size (Area¹/₂)

WCRP-THORPEX MJO-TF/GCSS model comparison

Seamless modelling of the diabatic heating structures of the MJO during YOTC

Three experimental components are:

- **1. climate simulation** multi-year simulations
 - How well does the model capture the diabatic structures of the MJO?
- **2. medium range hindcasts** a few 10 day initialized forecasts from good MJO cases in the YOTC analysis
 - How does the diabatic heating of the MJO "spin-down" through the period?
- 3. short range hindcasts daily 36hr forecasts during ~20 days of the MJO
 - What are the physical tendencies (moisture, heat and momentum) while model is close to analysis?

Part 3: the IAA (Intensive Analysis Area)

- High temporal sampling (model timestep?)
- Vertical profiles
- Break down of all physical tendencies of moisture, heat (and momentum) OLR [20/10/2009-10/11/2009] W/m2

Indian Ocean: [70E.5N.80E.5S]

Once we learn from the climate models we can design a focused hierarchical modelling effort.

e.g. CASCADE MJO runs: 2 billion grid points

- Domain: 140° Ion and 40° latitude
- 1.5km resolution (70 levs)

Discussion: Seamless prediction and hierarchical modelling

What are the strengths/weaknesses?

How can we learn more from seamless prediction?

Views on the "seamless" model comparison of the MJO?

Only spares now...

Maritime Continent: [110E,5N,120E,5S]

Figure 2: As Figure 1 but for a box in the Maritime Continent.

Maritime Continent: [110E,5N,120E,5S]

OPER

CONV

Figure 2: As Figure 1 but for a box in the Maritime Continent.

Figure 2. As Figure 1 but for a box in the Manume Continent.

Figure 3: As Figure 1 but for a box in the West Pacific.

Figure 1: Box averaged diabatic heating profiles (shading) and precipitation (black line) during the April 2009 MJO case study. Top panel: operational IFS cycle (Cy 35r2) and TRMM precipitation. Bottom panel: 'New' model (Cy 33r1) with 'old ' configuration of convection and equivalent model precipitation.

Indian Ocean: [70E,5N,80E,5S]

Date

West Pacific: [150E,5N,160E,5S]

T+30: 6Z Tuesday 10th May 2011 **UKV & Global**

Met Office

T+30: 6Z Tuesday 10th May 2011 **UKV & Global**

Met Office

T+30: 6Z Tuesday 10th May 2011 **UKV & Global**

