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INTRODUCTION



Abstract

• Gravity waves can trigger/favor the formation of new convection

• If new convection forms repeatedly on a preferred side of preexisting
convection, then a convectively coupled wave is formed

• What creates a preferred side? Hypothesis: wind shear

• Design a simple model for interactions of gravity waves and wind shear

• Results:

– Wind shear can create a preferred side

– Jet shears create the greatest difference in favorability between two sides

– Predictions of preferred propagation direction of convectively coupled
waves in a given background wind shear

• Other application:

– Formation of new cells within an individual mesoscale convective system

– Resonance renders upstream more favorable than downstream



Gravity waves and organized convection
Buoyancy anomalies excited by top-heavy heating

Convection can excite gravity waves

Gravity waves can excite new convection

Theory: the role of (1) deep convection and (2) stratiform heating

from Tulich and Mapes (2008) and Mapes (1993)



Convectively coupled waves:

Envelopes of mesoscale convective systems

from Nakazawa (1988)

• Embedded cloud systems propagate in
opposite direction of wave envelope

• New cloud systems tend to form on a
preferred side of preexisting cloud systems

• What causes wave trains to form preferentially
(rather than scattered convection)?

• What determines the preferred propagation
direction of the convectively coupled wave?

• Hypothesis: interactions of gravity waves
with wind shear



SIMPLIFIED MODEL



Starting point: Hydrostatic Boussinesq equations
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U = horizontal velocity P = pressure

W = vertical velocity Θ = temperature



Gravity waves in the tropical atmosphere

Linear waves:

• Independent vertical modes: U(x, z, t) =
∑

j uj(x, t) cos jz, etc.

• Shallow water system for each vertical mode j:
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Nonlinear waves:

• Project nonlinear equations

∂tU + U∂xU + W∂zU + ∂xP = 0

onto vertical modes

U(x, z, t) = u1(x, t) cos z + u2(x, t) cos 2z

• The result is ...



2-Mode Shallow Water Equations
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• Nonlinear, hydrostatic internal gravity waves with effect of background shear



CONVECTIVELY COUPLED
WAVES



Numerical experiment WITHOUT wind shear

Forcing

−500 0 500
0

2

4

6

8

10

x (km)

S
θ (

K
/h

ou
r)

−20 −10 0 10 20
0

4

8

12

16

S
θ
 (K/hour)

z 
(k

m
)

Potential temp. response

−500 0 500
0

0.5

1

1.5

x (km)

θ 1 (
K

)

−4 −2 0 2 4
0

4

8

12

16

z 
(k

m
)

Θ (K)

Results symmetric to east and west of forcing



Numerical experiment WITH wind shear
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• West of forcing is more favorable
for new convection than east

• Agrees with observations for this wind

shear (Wu and LeMone, 1999)
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• Consistent with features of CCW envelope and embedded cloud systems

– Individual cloud systems propagate eastward

– Convectively coupled wave propagates westward



Optimal shears for east–west asymmetry

A measure of the east–west asymmetry due to wind shear:

• the jump in θ across the source, [θ] = θ+ − θ−

Which shear profiles Ū(z) maximize [θ1]?

Which shear profiles Ū(z) lead to [θ1] = 0

Use linear theory with singular source term:

∂tu + A(ū)∂xu = S∗δ(x)

Results:
Jet shears maximize [θ1]
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MESOSCALE CONVECTIVE
SYSTEMS



Gravity waves can excite new convective cells

from Fovell et al. (2006)

• New cells initiated ahead of existing squall line due to gravity waves

• New cells merge with existing squall line

• What are the physical mechanisms involved?



Numerical experiment with headwind
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• Repeat earlier jet-shear
experiment with headwind added
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• Headwind is equivalent to propagating source (i.e., propagating squall line)

• Headwind confines upstream wave to vicinity of source

• East is more favorable for new convection than west at low levels



Numerical experiment with stronger headwind
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2nd baroclinic wave speed = 25 m/s

⇒ near resonant forcing
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• Faster propagation leads to more favorable environment at low levels

• If squall line propagation speed ≈ gravity wave speed,
then wave amplitude is large due to near-resonance



Conclusions

• 2-mode shallow water equations:

– simplified nonlinear model for waves interacting with wind shear

• Predictions of preferred propagation direction
of convectively coupled waves in a background wind shear

– wind shear can lead to east–west asymmetries in favorability
for new convection

– jet shears lead to largest east–west asymmetries

– linear theory is accurate to within 10 % (usually)

• Initiation of new convective cells ahead of individual convective system

– Propagation of source leads to near-resonant forcing and amplification
of upstream waves

Stechmann and Majda (2009), in J. Atmos. Sci.

Stechmann et al. (2008), in Theoretical and Computational Fluid Dynamics
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