Gravity Waves in Shear and

Implications for Organized Convection

Sam Stechmann (Wisconsin) and Andy Majda (NYU)

(paper in J. Atmos. Sci., 2009)

Workshop on Modelling Monsoon Intraseasonal Variability

Busan, Korea

June 2010

INTRODUCTION

Abstract

- Gravity waves can trigger/favor the formation of new convection
- If new convection forms repeatedly on a preferred side of preexisting convection, then a *convectively coupled wave* is formed
- What creates a preferred side? Hypothesis: wind shear
- Design a simple model for interactions of gravity waves and wind shear
- Results:
 - Wind shear can create a preferred side
 - Jet shears create the greatest difference in favorability between two sides
 - Predictions of preferred propagation direction of convectively coupled waves in a given background wind shear
- Other application:
 - Formation of new cells within an individual mesoscale convective system
 - Resonance renders upstream more favorable than downstream

Gravity waves and organized convection

Buoyancy anomalies excited by top-heavy heating

Convection can excite gravity waves

Gravity waves can excite new convection

Theory: the role of (1) deep convection and (2) stratiform heating

from Tulich and Mapes (2008) and Mapes (1993)

Convectively coupled waves: Envelopes of mesoscale convective systems

- Embedded cloud systems propagate in opposite direction of wave envelope
- New cloud systems tend to form on a preferred side of preexisting cloud systems
- What causes wave trains to form preferentially (rather than scattered convection)?
- What determines the preferred propagation direction of the convectively coupled wave?
- Hypothesis: interactions of gravity waves with wind shear

SIMPLIFIED MODEL

Starting point: Hydrostatic Boussinesq equations

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + W \frac{\partial U}{\partial z} + \frac{\partial P}{\partial x} = 0$$
$$\frac{\partial P}{\partial z} = g \frac{\Theta}{\theta_{ref}}$$
$$\frac{\partial \Theta}{\partial t} + U \frac{\partial \Theta}{\partial x} + W \frac{\partial \Theta}{\partial z} + W \frac{d\theta_{bg}}{dz} = 0$$
$$\frac{\partial U}{\partial x} + \frac{\partial W}{\partial z} = 0$$

U = horizontal velocity P = pressure W = vertical velocity $\Theta =$ temperature

Gravity waves in the tropical atmosphere

Linear waves:

- Independent vertical modes: $U(x, z, t) = \sum_{j} u_j(x, t) \cos jz$, etc.
- Shallow water system for each vertical mode j:

Nonlinear waves:

• Project nonlinear equations

$$\partial_t U + U \partial_x U + W \partial_z U + \partial_x P = 0$$

onto vertical modes

$$U(x, z, t) = u_1(x, t) \cos z + u_2(x, t) \cos 2z$$

• The result is ...

2-Mode Shallow Water Equations

$$\begin{cases} \frac{\partial u_1}{\partial t} - \frac{\partial \theta_1}{\partial x} = -\frac{3}{\sqrt{2}} \left[u_2 \frac{\partial u_1}{\partial x} + \frac{1}{2} u_1 \frac{\partial u_2}{\partial x} \right] \\ \frac{\partial \theta_1}{\partial t} - \frac{\partial u_1}{\partial x} = -\frac{1}{\sqrt{2}} \left[2u_1 \frac{\partial \theta_2}{\partial x} + 4\theta_2 \frac{\partial u_1}{\partial x} - u_2 \frac{\partial \theta_1}{\partial x} - \frac{1}{2} \theta_1 \frac{\partial u_2}{\partial x} \right] \\ \left(\frac{\partial u_2}{\partial t} - \frac{\partial \theta_2}{\partial x} \right] = 0 \end{cases}$$

$$\begin{cases} \partial t & \partial x \\ \frac{\partial \theta_2}{\partial t} - \frac{1}{4} \frac{\partial u_2}{\partial x} &= -\frac{1}{2\sqrt{2}} \left[u_1 \frac{\partial \theta_1}{\partial x} - \theta_1 \frac{\partial u_1}{\partial x} \right] \end{cases}$$

• Nonlinear, hydrostatic internal gravity waves with effect of background shear

CONVECTIVELY COUPLED WAVES

Numerical experiment WITHOUT wind shear

Results symmetric to east and west of forcing

Numerical experiment WITH wind shear

- West of forcing is more favorable for new convection than east
- Agrees with observations for this wind shear (Wu and LeMone, 1999)

- Consistent with features of CCW envelope and embedded cloud systems
 - Individual cloud systems propagate $\mathit{eastward}$
 - Convectively coupled wave propagates westward

Optimal shears for east–west asymmetry

A measure of the east–west asymmetry due to wind shear:

• the jump in θ across the source, $[\theta] = \theta^+ - \theta^-$

Which shear profiles $\overline{U}(z)$ maximize $[\theta_1]$? Which shear profiles $\overline{U}(z)$ lead to $[\theta_1] = 0$

Use linear theory with singular source term:

$$\partial_t \mathbf{u} + A(\bar{\mathbf{u}})\partial_x \mathbf{u} = \mathbf{S}^* \delta(x)$$

Results:

Jet shears maximize $[\theta_1]$

Profiles with zero shear at upper levels lead to $[\theta_1] = 0$

MESOSCALE CONVECTIVE SYSTEMS

Gravity waves can excite new convective cells

- New cells initiated *ahead of* existing squall line due to gravity waves
- New cells merge with existing squall line
- What are the physical mechanisms involved?

Numerical experiment with headwind

• Repeat earlier jet-shear experiment with headwind added

- Headwind is equivalent to propagating source (i.e., propagating squall line)
- Headwind confines upstream wave to vicinity of source
- East is more favorable for new convection than west *at low levels*

Numerical experiment with stronger headwind

Source propagation speed = 15 m/s2nd baroclinic wave speed = 25 m/s \Rightarrow near resonant forcing

- Faster propagation leads to more favorable environment *at low levels*
- If squall line propagation speed \approx gravity wave speed, then wave amplitude is large due to near-resonance

Conclusions

- 2-mode shallow water equations:
 - simplified nonlinear model for waves interacting with wind shear
- Predictions of preferred propagation direction of convectively coupled waves in a background wind shear
 - wind shear can lead to east—west asymmetries in favorability for new convection
 - jet shears lead to largest east-west asymmetries
 - linear theory is accurate to within 10 % (usually)
- Initiation of new convective cells ahead of individual convective system
 - Propagation of source leads to *near-resonant forcing and amplification* of upstream waves

Stechmann and Majda (2009), in J. Atmos. Sci. Stechmann et al. (2008), in Theoretical and Computational Fluid Dynamics

References

- Fovell, R., G. Mullendore, and S. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 3735–3752.
- Mapes, B., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 2026–2037.
- Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Met. Soc. Japan, 66, 823–839.
- Stechmann, S. N. and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 2579–2599.
- Stechmann, S. N., A. J. Majda, and B. Khouider, 2008: Nonlinear dynamics of hydrostatic internal gravity waves. *Theor. Comp. Fluid Dyn.*, 22, 407–432.
- Tulich, S. and B. Mapes, 2008: Multi-scale convective wave disturbances in the Tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140–155.

Wu, X. and M. LeMone, 1999: Fine structure of cloud patterns within the intraseasonal oscillation during toga coare. *Monthly Weather Review*, **127**, 2503–2513.