

**CliPAS** Climate Prediction and its Application to Society



# **Statistical and Dynamical Prediction of Monsoon Intraseasonal Oscillation**

# June-Yi Lee<sup>1</sup>, Bin Wang<sup>1</sup>, Xiouhua Fu<sup>1</sup>, Duane Waliser<sup>2</sup>, Hye-Mi Kim<sup>3,</sup> In-Sik Kang<sup>4</sup>

<sup>1</sup>International Pacific Research Center and Department of Meteorology, University of Hawaii, USA, <sup>2</sup>Jet Propulsion Laboratory, Caltech, USA <sup>3</sup>Georgia Institute of Technology, USA, <sup>4</sup>Seoul National University, Korea

# and CliPAS ISO Team

# **1. Introduction**

Boreal summer Monsoon Intraseasonal Oscillation (MISO) is one of the most prominent short-term climate variability in the global monsoon system and more complex in nature than the Madden-Julian Oscillation (MJO) due to the interaction between the basic monsoon circulation and tropical ISO. It is to note that the Real-time Multivariate MJO (RMM) index (Wheeler and Hendon, 2004) has a limitation to explain large ISO variability over the Asian Monsoon region (40°-160°E, 10°S-40°N) in boreal summer. Moreover, statistical MISO prediction based on RMM index has limited skills especially over the Western North Pacific and East Asian monsoon region. In the previous study, we designed the new MISO index defined by the first four PCs of multivariate EOF analysis of OLR and U850. Statistical model for the MISO index has been developed and compared with six predictions which participate in CliPAS ISO models' hindcast coupled intercomparison project.

Target Months : MJJAS

# **3.** Dynamical Prediction

# **Numerical Design for ISO Hindcast**

## **EXP1: CONTROL SIMULATION**

|                              |                                                                                                   |  |              |                              |                  | 2000          |      |                            |                  |
|------------------------------|---------------------------------------------------------------------------------------------------|--|--------------|------------------------------|------------------|---------------|------|----------------------------|------------------|
| Re Forecast Period           | 20 years from 1989 to 2008                                                                        |  |              |                              | CM2              |               | 1000 |                            | The first day of |
| Initial Date                 | Every 10 days on 1 <sup>st</sup> , 11 <sup>th</sup> , and 21 <sup>st</sup> of each calendar month |  | GFDL         | (AM2/LM2+<br>MOM4)           | CMIP             | 2008          | 10   | every month                |                  |
| The Length of<br>Integration | At least 45 days                                                                                  |  | NCEP/<br>CPC | CFS (GFS+<br>MOM3)           | CMIP<br>(100yrs) | 1981-<br>2008 | 5    | Every 10 days              |                  |
| Ensemble<br>Member           | At least 6 members                                                                                |  | SNU          | SNU CM<br>(SNUAGCM<br>+MOM3) | CMIP<br>(20yrs)  | 1981-<br>2001 | 6    | Every 10 days              |                  |
| Initial condition            | Initial conditions may use one day lag or 12 hours                                                |  | UH/<br>IPRC  | UH HCM                       | CMIP             | 1989-<br>2008 | 6    | Every 10 days during MJJAS |                  |

### **ONE-TIER SYSTEM**

| A long simulation allows us to better understand the<br>dependence of the prediction on initial conditions and<br>better define metrics that measure the "drift" of the model<br>toward their intrinsic MJO/MISV modes |                                                                                                                                                                          |              |                               |                  | ISO Hindcast  |           |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|------------------|---------------|-----------|-----------------------------------------|
|                                                                                                                                                                                                                        |                                                                                                                                                                          |              | Model                         | Run              | Period        | Ens<br>No | Initial<br>Condition                    |
| Free coupled runs<br>with specified bound<br>Sea ice distribution)                                                                                                                                                     | ree coupled runs with AOGCMs or AGCM simulation<br>vith specified boundary forcing (e.g., observed SST and<br>Sea ice distribution) are requested for at least 20 years. |              | POAMA 1.5<br>(ACOM2+<br>BAM3) | CMIP             | 1980-<br>2006 | 10        | The first day of every month            |
| The period for the forced AGCM run should be consistent with the hindcast period                                                                                                                                       |                                                                                                                                                                          |              | INGV<br>(ECHAM4+<br>OPA8.1)   | CMIP<br>(20yrs)  | 1989-<br>2008 | 5         | Every 10 days                           |
| EXP2: ISO HINDCAST                                                                                                                                                                                                     |                                                                                                                                                                          |              | ECMWF<br>(IFS+HOPE)           | CMIP<br>(11yrs)  | 1989-<br>2008 | 15        | The 15 <sup>th</sup> day of every month |
| Re Forecast Period<br>Initial Date                                                                                                                                                                                     | 20 years from 1989 to 2008<br>Every 10 days on 1 <sup>st</sup> , 11 <sup>th</sup> , and<br>21 <sup>st</sup> of each calendar month                                       | GFDL         | CM2<br>(AM2/LM2+<br>MOM4)     | CMIP             | 1982-<br>2008 | 10        | The first day of every month            |
| The Length of Integration                                                                                                                                                                                              | At least 45 days                                                                                                                                                         | NCEP/<br>CPC | CFS (GFS+<br>MOM3)            | CMIP<br>(100yrs) | 1981-<br>2008 | 5         | Every 10 days                           |
| Ensemble<br>Member                                                                                                                                                                                                     | At least 6 members                                                                                                                                                       | SNU          | SNU CM<br>(SNUAGCM<br>+MOM3)  | CMIP<br>(20yrs)  | 1981-<br>2001 | 6         | Every 10 days                           |
| Initial condition                                                                                                                                                                                                      | Initial conditions may use one day lag or 12 hours                                                                                                                       | UH/<br>IPRC  | UH HCM                        | CMIP             | 1989-<br>2008 | 6         | Every 10 days during MJJAS              |

# **2.** Staistical Prediction

# **Statistical Model for MISO**

Statistical Model – STEP I: Prediction of the Four Modes of MISO Index 24

Lagged Multiple Linear Regression Model (Jiang et al. 2008) Forecast Period : 1996 – 2009  $X(t_0 + \tau) = \sum \sum C_{j,k} \bullet PC_k(t_0 - j + 1)$ Training Period : Last 10 years  $X(t_0 + \tau)$  : Predictant X at forecast lead time from target year  $t_0$ : the time at the forecast point: the forecast lead N: the number of total PCs included in the model

M: the number of lagged days used for the prediction

#### **Temporal Correlation Coefficient Skill RMM** Index MISO Index - M2 —— M1 ----- M2 <u>— М1 -----</u> 0.6 -0.5 1 2 3 4 5 6 2 3 4 5 6 Forecast Pentad Forecast Pentad

#### Statistical Model –

#### **STEP II: Reconstruction of Anomaly Field from the MISO Index**

(1) Reconstruction of pentad OLR and U850 anomalies from MISO modes over the ASM domain using multiple linear regression model (fitting)

$$Y(lon, lat, t_0) = \sum_{i=1}^{N} \alpha_i(lon, lat) \bullet X_i(t_0)$$

 $Y(Ion, Iat, t_0)$  : Reconstructed field from PCs at reference time

(2) Reconstruction of the predicted pentad OLR and U850 anomalies from the predicted MISO modes as a function of forecast lead time

$$Y(lon, lat, t_0 + \tau) = \sum_{i=1}^{N} \alpha_i(lon, lat) \bullet X_i(t_0 + \tau)$$

 $\tau$  : forecast lead time

#### **CURRENT STATUS OF THE ISO HINDCAST**

| Ins      | stitution   | Participants                      | Model             | Current Status                                                                                             |           |
|----------|-------------|-----------------------------------|-------------------|------------------------------------------------------------------------------------------------------------|-----------|
| AB       | BOM         | Harry<br>Hendon                   | POAMA 1.5<br>CGCM | 26-year integration initiated the first day of every month with 10 ensemble simulations (1980-2006)        | Collected |
| CN       | ИСС         | A. Navarra<br>A. Alessandri       | CMCC<br>CGCM      | 20-year integration initiated every 10 days (1989-2008)                                                    | Collected |
| CV       | VB          | Mong-Ming<br>Lu                   | CWB<br>AGCM       | 25-year integration initiated every 10 day (1981-2005)                                                     | Collected |
| EC       | MWF         | F. Molteni,<br>Frederic<br>Vitart | ECMWF<br>CGCM     | 20-year integration initiated the 15 <sup>th</sup> of every month (1989-2008)                              | Collected |
| GF       | DL          | W. Stern                          | CM2.1<br>CGCM     | 27-year integration initiated the first day of every month (1982-2008)                                     | Collected |
| JN       | <b>1</b> A  | K. Takahashi                      | JMA AGCM          | 20-year integration initiated every month (1989-2008)                                                      |           |
| N/<br>GN | ASA/<br>MAO | S. Schubert<br>P. Pegion          | GMAO<br>AGCM      | 20-year integration initiated every day (1989-2008)                                                        |           |
| NC<br>CP | CEP/<br>PC  | A.Kumar<br>J.K.E.<br>Schemm       | CFS<br>CGCM       | 26-year integration initiated every 10 days (1981-2008)                                                    | Collected |
| SN       | 10          | IS. Kang                          | SNU<br>CGCM       | 21-year integration initiated every five days during NDJFM season (1981-2001) and MJJAS season (1998-2008) | Collected |
| UF       | H/IPRC      | X. Fu<br>JY. Lee                  | UH<br>CGCM        | 20-year integration initiated every 5 day during MJJAS (1989-2008)                                         | Collected |
| M        | RD/EC       | Gilbert<br>Brunet<br>Hai Lin      | MRD<br>AGCM       | 24-year integration initiated every 10 days (1985-2008)                                                    | Collected |

99-08

#### **Temporal Correlation Coefficient Skill for U850**

GFDL 89-98

89-98

89-96

NCEP 89-98

| Iempor        | al Correlatio | on Coettic    | cient Skill fo | or OLR      |
|---------------|---------------|---------------|----------------|-------------|
| ABOM<br>89-96 | CMCC<br>89-98 | GFDL<br>89-98 | NCEP<br>89-98  | UH<br>99-08 |
| very month    | every 10 days | every month   | every 10 days  | every 10 da |







# Summary

- A statistical forecast model for the MISO index has been developed based on multivariate lag-regression model. The statistical model has a useful skill up to lead time of 15-20 days for each PCs of the MISO index. The reconstructed forecast of pentad OLR and U850 anomaly from the MISO index has a useful skill up to 10-20 days depending on region.
- Multi-institutional ISO hindcast experiment has been coordinated to determine potential and practical predictability of ISO in a multi-model frame work. Nine hindcast outputs has been collected from seven coupled and two atmospheric models.
- Five coupled models have skills for the four PCs of the MISO index up to 10 to 25 days depending on models and PCs. CMCC model outperforms the other coupled models and statistical model. Statistical model has slightly better skill for the first and second PCs than and comparable skill for the third and fourth PCs to other four coupled models.

June-Yi Lee jylee@soest.hawaii.edu