

Submonthly Indian Ocean Cooling Events and their Interaction with Large-Scale Conditions (J. Clim., in press)

¹Program in Atmospheric and Oceanic Sciences, Princeton University, NJ 08540, USA ²Geophysical Fluid Dynamics Laboratory, NOAA, Princeton NJ 08544, USA ²Gabriel A. Vecchi

Introduction: The Indian Ocean exhibits strong SST variability on intraseasonal timescales

¹Ian D. Lloyd

aly (1-30 day bandp

Goals:

- Diagnose the physical mechanisms responsible for cooling events, in both observations and models.

- Investigate relation between cooling events and large-scale conditions.

The Thermocline Ridge Index (TRI) is of particular interest: Shallow thermocline and mixed laver cause strong intraseasonal SST variability, including short timescale (sub 30-day) 'cooling events' (Harrison and Vecchi 2001; Duvel et. al. 2004; Saji et. al. 2006).

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) satellite allows for new insights into airsea processes.

Cooling events are preconditioned by largescale conditions GFDL CM2.1 GFDL CM2.4 - Large-scale ocean conditions are important for cooling events; and coupled models are preconditioned by a shallower thermocline. - Cooling events are preconditioned by a shallower thermocline in the TRI. - La Niña/negative IOD conditions exist prior to cooling events, with increased Walker circulation. Cooling events are linked to strong eastward convective propogation (MJO) - Hovmoller diagrams showing OLR have stronger eastward propogation (~5m/s) when using an index based on cooling events instead of precipitation events. - Stronger SST cooling implies stronger Madden-Julian Oscillation (MJO) signal. - Does intraseasonal SST variability in the thermocline ridge region influence the MJO through ocean-atmosphere coupling?

References

 Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer ter verturbations over the Indian Ocean. J. Atmos. Sci., 61, 3056–3082 Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Lloyd I. D., Vecchi G. A., 2009: Submonthly Indian Ocean Cooling Events and their cooling event Geophys Res Lett 28 3717-3720

Loy No. D., Vectori S. A., 2008. Subminum yilliail Ocen Coung Events and uten interaction with Large-Scale Collutions. J. Climate: In Press.
Price, J. F. R. A. Weiler, and R. Pinkel. 1986. Diumal cycling: Observations and models of the upper ocean response to diumal heating, cooling, and wind mixing. J. Geophys. Res. 91, 8411–8427.
Say, N. H., S.-P. Xe, and C. Y. Tam, 2006. Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett. 32, 11 4740, doi: 10.1022/00561.202525.