Simulation of the Madden-Julian Oscillation in GCMs

: Progress and Issues

Daehyun Kim

*GCRM (global cloud resolving model): Next talk

MJO is still a challenging problem..

No satisfactory theory that everyone agrees

Inadequate simulation capability in most of the standard GCMs
 Slingo et al. 1996: "models are poor"
 Waliser et al. 2003 "models are poor"
 Lin et al. 2006 " models are poor"
 Progress?? 😕

Progress

Do we know what component of model configuration is important/unimportant?
Horizontal resolution: not important
Vertical resolution: positive impact
Air-sea coupling: some modification (e.g. amplitude)
Convection scheme: crucial

Then, do we know how to improve representation of the MJO in GCMs?

Yes, we know! ③

Mean state (Nov-Apr)

Space-time power spectra

Cumulus parameterization

Tokioka et al. 1988; Wang and Schlesinger 1999; Lee et al. 2001; Maloney and Hartmann 2001; Maloney 2002; Lee et al. 2003; Liu et al. 2005; Zhang and Mu 2005; Lin et al. 2008... more?

Hypothesis: deep convection is a core component of the MJO, simulation fidelity of the MJO should depends on the way in which it is represented

MJO Variance (eastward wavenumber 1-6, periods 30-70days)

Progress (from our experiences)

We know what is important and what is not important

- Horizontal resolution: not important
- Vertical resolution: positive impact
- Air-sea coupling: some modification
- **Convection scheme: crucial**

We know how to improve MJO in GCMs
 Cumulus parameterization: mass-flux convection scheme

AMIP ((Slingo	et al.	1996)
--------	---------	--------	-------

Model	Deep convection
BMRC	Кио
CCC	МСА
CNRM	Bougeault
CSIRO	МСА
CSU	AS+MCA
ECMWF	Tiedtke
GLA	AS
GSFC	RAS
LMD	Kuo+MCA
MRI	AS
NCAR	Hack
NMC	Kuo/Tiedtke
RPN	Кио
UGAMP	Betts-Miller
UKMO	Gregory

CMIP3 (Lin et al. 2006)

Model	Deep convection
GFDL CM2.0	RAS
GFDL CM2.1	RAS
NCAR CCSM3	ZM
NCAR PCM	ZM
GISS-AOM	Russell et al.
GISS-ER	Del Genio and Yao
MIROC-hires	Pan and Randall
MIROC-medres	Pan and Randall
MRI	Pan and Randall
СССМА	ZM
MPI	Tiedtke
IPSL	Emanuel
CNRM	Bougeault
CSIRO	Gregory and Rowntree

AMIP (Slingo	et al. 1996)
--------------	--------------

Model	Deep convection
BMRC	Кио
CCC	MCA
CNRM	Bougeault
CSIRO	МСА
CSU	AS+MCA
ECMWF	Tiedtke
GLA	AS
GSFC	RAS
LMD	Kuo+MCA
MRI	AS
NCAR	Hack
NMC	Kuo/Tiedtke
RPN	Кио
UGAMP	Betts-Miller
UKMO	Gregory

CMIP3 (Lin et al. 2006)

Model	Deep convection
GFDL CM2.0	RAS
GFDL CM2.1	RAS
NCAR CCSM3	ZM
NCAR PCM	ZM
GISS-AOM	Russell et al.
GISS-ER	Del Genio and Yao
MIROC-hires	Pan and Randall
MIROC-medres	Pan and Randall
MRI	Pan and Randall
СССМА	ZM
MPI	Tiedtke
IPSL	Emanuel
CNRM	Bougeault
CSIRO	Gregory and Rowntree

Lack of sensitivity to environmental moisture

How to improve MJO in your model

Make convection scheme more sensitive to environmental moisture

□ If cloud top is determined first (as in many of AS-variants) → impose minimum entrainment rate

If cloud top is determined interactively imes increase entrainment rate

Additionally you can allow more evaporation from falling precipitation

Cloud model of mass flux cumulus parameterizations

Results of GISS model

Wavenumber-frequency diagram (symmetric)

(a) GPCP

Poster session (Daehyun Kim)

Moisture-convection interaction

Composite based on precipitable water – GISS models

Poster session (Daehyun Kim)

 We don't fully understand why we have different MJOs in different models
 Process-oriented diagnostics (MJO TF)

What is going on, at least in the model?
 MJO mechanism study

Better MJO is not necessarily accompanied by better mean state

- Systematic relation between biases
- Do we need air-sea coupling?

Process-oriented diagnostics

Process-oriented diagnostics

PDF-weighted precipitation vs. Saturation fraction

Strong MJO model has more contribution from heavy precipitation for total precipitation

MJO mechanism study

Experimental Design

	Tok=0	Tok=0	Tok=0.1	Tok=0.1
Trigger	Х	Х	0	0
Evaporation (WISHE)	interactive	climatology prescribed (from Tok=0)	interactive	climatology prescribed (from Tok=0.1)
Net radiative heating (Cloud- radiation interaction)	interactive	climatology prescribed (from Tok=0)	interactive	climatology prescribed (from Tok=0.1)
Surface wind stress (Frictional- CISK)	interactive	climatology prescribed 20S-20N only (from Tok=0)	interactive	climatology prescribed 20S-20N only (from Tok=0.1)

*SNUGCM, AMIP, period: 1997-2004

-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 >

November-April lag-longitude diagram of 10°N-10°S averaged intraseasonal 850 hPa zonal wind anomalies correlated against intraseasonal precipitation at the west Pacific (155-160°E, 5°N-5°S averaged) reference point.

Summer

Subseasonal (20-100day) variability

Summer

Mean precipitation/U850

Do we need air-sea coupling?

SST

Precipitation

20N EQ 20S 0 40E 80E 120E 160E 160W 120W 80W 40W 0

*CGCM : 6 year average after 1 year spin-up

Progress

- We have understood what is important and what is unimportant in MJO simulation capability of GCM
- We have known how to improve GCMs to have better MJO simulation capability

Issues

- We need more understanding on why GCMs have different capabilities to simulate the MJO
- Better MJO model shows systematic bias which is not well understood

Any questions?

Resolution

- Horizontal: Rajendran et al. 2008; Liu et al. 2009
- Hypothesis: resolve small scale phenomena
 → improve MJO simulation
- Vertical: Inness et al. 2001; Jia et al. 2008
- Hypothesis: be able to represent cumulus congestus → improve MJO simulation

Lag correlation diagram (convective precip vs. 200hPa VP)

Cloud top height spectrum

0

200

400

600

800

1000

0

10

percentage

agua-planet L30 cloud top height spectrum

L30

30

20

Inness et al. 2001, HadAM3

Space-time power spectra (Eastward) (c) BAM3 U850 (e) BAMC U850 (o) ECHAM4 U850 (q) ECHO-G U850 -30 90 50 -50 -90

Zhang et al. 2006, BAM, GFS03, CAM3, ECHAM4

Space-time power spectra (Northward)

Fu and Wang 2004, ECHAM4

Coupling to Ocean

 Waliser et al. 1999; Hendon 2000; Kemball-Cook et al. 2002; Inness and Slingo 2003; Fu and Wang 2004; Sperber et al. 2005; Marshall et al. 2008

 Hypothesis: realistic representation of airsea coupled process → improve MJO simulation

Strong MJO models show.

Excessive summer monsoon

Is coupling to ocean helpful?

Motivations

- MJO WG developed diagnostics that makes it possible to diagnose the MJO in order to assess simulation and track the improvement (e.g. amplitude): We can say confidently whether one model simulates the MJO and another doesn't but we need diagnostics that provide insight as to why
- Need to develop diagnostics that focus on physical processes of relevance to the MJO so as to deepen understanding of simulation and promote improved simulation
- If MJO WG developed a thermometer that can measure body temperature of sick person, now MJO TF aims for develop stethoscope to diagnose the reason for the symptom

Two possible ways of development

Semi-empirical way

- try lots of approaches, using multiple simulations that have wimpy and strong MJO/ISV, and then focus in on those that are obviously consistent across the spectrum of simulations (e.g. common features in strong-MJO models)
- Objective way (from theory)
 - test some (many?) diagnostics from theory and select some of them which are proved in our application to fulfill the requirements

Existing (suggested) diagnostics

- **Precipitation vs. Saturation fraction** (originally Bretherton et al 2004; Zhu et al. 2009, Theyer-Calder and Randall 2009; Maloney et al. 2010) bin rainfall into sat frac bins
- **Composite/bin based on precipitation** (Thayer-Calder and Randall 2009, Kim et al. 2009, Zhu et al. 2009, Neale ??)
 - relative humidity, temperature, specific humidity, diabatic heating, moistening, cloud liquid/ice water, convergence, changes in PW, etc.
- **Composite based on MJO index** (doesn't work if no MJO; Maloney et al. 2010, Tian et al. 2010, Jiang et al. 2010, Ling and Zhang 2010)
 - Maloney et al.: moist static energy budget : horizontal/vertical advection, surface flux, radiative heating
 - Tian et al.: temperature and specific humidity anomaly
 - Jiang et al.: cloud liquid/ice water
 - Ling and Zhang : diabatic heating

complexity

•

Sat. Frac. vs. PRCP

Raymond

Bretherton et al (2004)

Neelin, Peters

Precipitation vs. Saturation fraction

PDF of saturation fraction

CAM vs. SPCAM (Zhu et al. 2009)

Precip vs. Saturation Fraction

Characteristics of PRCP vs. Sat. Frac. and PDF of Sat. Frac. in different models and its relationship to simulation capability of the MJO

	PRCP vs. Sat. Frac.	PDF of Sat. Frac.
CAM vs. SPCAM (Zhu et al. 2009) 60-180E, 12S-12N Ocean only	 Weak-MJO model can not retain high sat. frac (>0.8) Strong-MJO model (stronger than obs) produces more rainfall in high sat. frac. regime (>0.85) compared to obs Strong-MJO model starts to make rain with higher sat. frac. 	 Probability of high sat. frac. (~0.8) is higher in strong-MJO model (compared to obs. Again, MJO is stronger than obs in this model)
SAS0 vs. NOCO (SNU, Daehyun) 50-180E, 18S-18N Ocean + Land	 Weak-MJO model can not retain high sat. frac (>0.95) Strong-MJO model produce more rainfall in high sat. frac. (>0.9) regime Strong-MJO model starts to make rain with higher sat. frac. 	 Probability of high sat. frac. (~0.8) is higher in strong-MJO model
No WISHE vs. WISHE (aqua CAM3.1, Eric) Tropics (aqua planet) Ocean only	 Strong-MJO model produce more rainfall in high sat. frac. (>0.85) regime 	

Is your MJO same as mine?

Impact of CMT on northward propagation of ISO

Summer

CAM3.1

Mean precipitation

Subseasonal (20-100day) variability

MJO Variance

(eastward wavenumber 1-6, periods 30-70days)

Fraction of convective precipitation to total

Motivations

What determines difference between models?