Progress with convective parameterization for Improved simulation of the MJO

In-Sik Kang Seoul National University

Drs. Myong-In Lee (USTU), Emilia Jin (GMU), Jong-Sung Kug (KORDI), Hye-Mi Kim (GTU), Dae-Hyun Kim (CU), Yoo-Geun Ham (NASA), Sung-Bin Park

Content

- 1. Motivation
- 2. Various convective parameterizations
- 3. Modifications of A/S scheme
- 4. Cloud Radiation Interaction
- 5. High Resolution Model
- 6. A New Mass Flux Scheme

CLIVAR Monsoon Intercomparison - MJO

10°S-10°N Time-Iongitude Cross Section of Precipitation during 1997

⁽C.I.=5 mm day-1)

Modification1: Cumulus Entrainment Constraint

Minimum cumulus entrainment rate in RAS (Tokioka et al. 1988)

SNU Aqua-planet AGCM with a fixed radiation

ISO with turning on Cloud-Radiation Interaction

Two Experiments in Aqua-Planet

Experiment	Description		
Fixed	Prescribed zonally uniform radiative heating rate		
Interactive	Fully interactive radiation		

 Cloud-radiation interaction simulated in the model (in particular, RAS scheme) prevents the eastward propagation of large-scale waves and make westward moving transients more prominent.

Time-longitude Diagram of Rainfall

ISO with turning on Cloud-Radiation Interaction

The longwave ACRF feedback is more crucial for this feature in RAS scheme.

Modification2: Layer-cloud Precipitation time Scale

Modification2: Layer-cloud Precipitation time Scale

Characteristic precipitation timescale, τ_p

$$\tau_{p} = \tau_{0} \left\{ 1 - \exp\left[-\left(\frac{l}{l_{0}}\right)^{2} \right] \right\}^{-1}$$

(Sundqvist, 1978)

- I_c : critical cloud liquid water content
- $\check{t_o}$: characteristic timescale for conversion of cloud droplets into rain drops

Precipitation rate

$$P = \frac{l}{\tau_p}$$

P: precipitation rate I: cloud liquid water content τ_p : characteristic precipitation timescale

→ The reduction of τ_p means fast autoconversion from cloud liquid water to precipitable raindrops

→ Reducing Cloud Lifetime

 \rightarrow Longwave ACRF (atmosphere cloud radiative forcing) heating reduced

Constant $\tau_p = 9600 \text{ sec}$ (original) \rightarrow smaller value up to 900 sec

Observational evidence: Autoconversion precipitation timescale over the tropics is 200–800 sec (Lau et al. 2003)

Zonal Mean OLR during Sep96 ~ Aug98

Experimental Design

	Tokioka effect	Layer-cloud precipitation timescale		Coupling with mixed
	RAS cumulus entrainment minimum	Reduced region	LSC time scale $ au_{\scriptscriptstyle 0}$	layer
Control	Off	No	9600 sec	
Exp1	<i>α</i> =0.1	20°S~20°N	9600/900 sine curve	
Exp2	<i>α</i> =0.1	20ºS~20ºN	9600/900 sine curve	Slab ocean mixed-layer model (Waliser et al. 1999)
Exp3	<i>α</i> =0.1	Whole globe	1800 sec	

Simulated precipitation

Modification3: Relative Humidity Criteria

Low Resolution (300km)

Longitude-time diagram of total precipitation (5S-5N)

40E 80E 120E 160E 160W 40E 80E 120E 160E 160W 40E 80E 120E 160E 160W 40E 80E 120E 160E 160W

unit : [mm/day]

MJO Variance (eastward wavenumber 1-6, periods 30-70days)

Resolution impact with same physics

TRMM: Satellite data (Precipitation)

MJO simulation

200hPa VP (20-70 day filter) : 1999yr

A new convective parameterization in SNU AGCM

Based on A Mass Flux Scheme

Kim and Kang (2010)

Representation of cumulus cloud

→ depends on environment

Practical representation of cumulus ensemble

Bulk method (Kim and Kang 2010, Clim Dyn.)

Cloud top determination
depends on environment

$$\varepsilon + \frac{1}{z_t - z}$$

*Above max. buoyancy (linear decrease to zero)

Equatorial (5S-5N averaged) precipitation

a) TRMM c) RAS b) Bulk JAN2000 FEB2000 MAR2000 APR2000 -MAY2000 -JUN2000 -JUL2000 -AUG2000 · SEP2000 -OCT2000 -NOV2000 DEC2000 -120E 120W 12'0W 120E 120W 120E 10 25 30 35 40 15 20

*year: 2000

Lag-correlation diagram (U850, 20-100day filtered)

: 155-160°E, 5°N-5°S averaged

Lag-correlation diagram

(U850, 20-100day filtered)

: 155-160°E, 5°N-5°S averaged

Sperber and Annamalai (2008) CMIP3 & 2+ Models

Northward propagation	СМТ	No CMT
O (9)	8	1
X (8)	0	0

Northward propagation of Monsoon Convection

Extended EOF (40-110E, 15S-30N)

• CMT: more strong northward propagation (northern region of 5N)

Physical interpretation

