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ABSTRACT

The output of two global atmospheric models participating in the second phase of the Canadian Historical
Forecasting Project (HFP2) is utilized to assess the forecast skill of the Madden–Julian oscillation (MJO).
The two models are the third generation of the general circulation model (GCM3) of the Canadian Centre
for Climate Modeling and Analysis (CCCma) and the Global Environmental Multiscale (GEM) model of
Recherche en Prévision Numérique (RPN). Space–time spectral analysis of the daily precipitation in near-
equilibrium integrations reveals that GEM has a better representation of the convectively coupled equa-
torial waves including the MJO, Kelvin, equatorial Rossby (ER), and mixed Rossby–gravity (MRG) waves.
An objective of this study is to examine how the MJO forecast skill is influenced by the model’s ability in
representing the convectively coupled equatorial waves.

The observed MJO signal is measured by a bivariate index that is obtained by projecting the combined
fields of the 15°S–15°N meridionally averaged precipitation rate and the zonal winds at 850 and 200 hPa
onto the two leading empirical orthogonal function (EOF) structures as derived using the same meridionally
averaged variables following a similar approach used recently by Wheeler and Hendon. The forecast MJO
index, on the other hand, is calculated by projecting the forecast variables onto the same two EOFs.

With the HFP2 hindcast output spanning 35 yr, for the first time the MJO forecast skill of dynamical
models is assessed over such a long time period with a significant and robust result. The result shows that
the GEM model produces a significantly better level of forecast skill for the MJO in the first 2 weeks. The
difference is larger in Northern Hemisphere winter than in summer, when the correlation skill score drops
below 0.50 at a lead time of 10 days for GEM whereas it is at 6 days for GCM3. At lead times longer than
about 15 days, GCM3 performs slightly better. There are some features that are common for the two
models. The forecast skill is better in winter than in summer. Forecasts initialized with a large amplitude for
the MJO are found to be more skillful than those with a weak MJO signal in the initial conditions. The
forecast skill is dependent on the phase of the MJO at the initial conditions. Forecasts initialized with an
MJO that has an active convection in tropical Africa and the Indian Ocean sector have a better level of
forecast skill than those initialized with a different phase of the MJO.

1. Introduction

The current predictability limit for the weather is of
the order of 1 week. Beyond that, due to growth of
initial errors and imperfections of the models, forecast
error becomes so large that a prediction contains little
useful information. Accordingly, great effort has been
made in reducing the initial errors, improving the physi-

cal processes, and developing more accurate and effi-
cient numerical algorithms in order to improve weather
forecasts on a time scale shorter than a week (e.g., van
den Dool 1994). Another important development is in
the area of seasonal forecasts. On this time scale, the
predictability comes from influences external to the at-
mosphere (e.g., Shukla et al. 2000). In particular, the
world oceans, with their much higher thermal and me-
chanical inertia, and correspondingly longer time
scales, interact with the atmosphere and can induce at-
mospheric responses that are predictable on a seasonal
time scale. There has recently been growing interest in
extended-range (7–30 days) forecasts (e.g., Waliser et
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al. 2006), which reflects the need to fill the historical
gap between the short-range weather forecast and sea-
sonal predictions. The strong amplitude and low-fre-
quency nature of the Madden–Julian oscillation (MJO)
provide an important signal for the extended-range
forecast in a global domain (e.g., Madden and Julian
1971; Lau and Phillips 1986; Matthews et al. 2004).
Thus, a skillful forecast of the MJO is both highly de-
sirable and potentially achievable.

Using a “perfect model” approach, Waliser et al.
(2003) estimated the limit of the potential predictability
of the MJO by the National Aeronautics and Space
Administration’s (NASA’s) Goddard Laboratory for
the Atmospheres (GLA) general circulation model
(GCM). It was demonstrated that in the region of
strong MJO (i.e., the Eastern Hemisphere), useful MJO
predictability can reach 25–30 days for the 200-hPa ve-
locity potential and about 10–15 days for precipitation.
In another potential predictability study by Reichler
and Roads (2005), the “perfect model” approach was
applied to the National Centers for Environmental Pre-
diction (NCEP) seasonal forecasting model. It was
shown that when model, initial, and boundary condi-
tions are all perfect, the useful forecast skill of the in-
traseasonal variability is about 4 weeks. Forecasts of
the MJO with statistical methods are also quite encour-
aging (e.g., Waliser et al. 1999; Lo and Hendon 2000;
Wheeler and Weickmann 2001; Mo 2001; Jones et al.
2004). The useful predictive skill of the MJO from these
empirical models can usually reach about 15–20-day
lead times.

The actual forecast skill of the MJO achieved by dy-
namical models, however, is considerably lower than
that of the empirical models. Using the early National
Meteorological Center (NMC) medium-range fore-
casts, Chen and Alpert (1990) showed that the model
forecast skill of the MJO reaches about 10 days when
the MJO amplitude is large. However, when the MJO
amplitude is weak, the forecast skill is poor. Jones et al.
(2000) evaluated the MJO prediction skill for NCEP’s
Dynamical Extended-Range Forecasts (DERF), and
found that useful predictive skill extends out to only
5–7 days. A similar result was reported in Hendon et al.
(2000) based on the output of the same model. The low
forecast skill of the MJO by dynamical models is most
likely caused by problems associated with convective
parameterizations in the models. Also, the poor repre-
sentation or neglect of air–sea interactions on this time
scale may be another reason (e.g., Flatau et al. 1997).
Slingo et al. (1996) compared the intraseasonal oscilla-
tion in 15 atmospheric general circulation models for
the Atmospheric Model Intercomparison Project
(AMIP) integrations, and found that the models do not

simulate well the MJO. Significant model problems in
simulating the tropical intraseasonal variability were
also reported in a recent comparison of climate simu-
lations by 14 coupled models participating in the Inter-
governmental Panel on Climate Change’s (IPCC)
Fourth Assessment Report (AR4; Lin et al. 2006). Fur-
thermore, due to scarce direct observations in the trop-
ics, the dynamical MJO forecast is affected by large
initial errors in the tropical analyses.

Up to now, there have been only a small number of
MJO forecast studies using dynamical models and most
of the models applied in studies of the MJO are similar
to each other. Forecast studies of the MJO using dif-
ferent models are necessary to further explore the ca-
pability of the dynamical approach. In this study, we
examine the forecast skill of the MJO achieved by two
Canadian models. From the near-climate-state integra-
tions of the two models, it is observed that they have
quite different patterns of behavior in simulating the
tropical waves, including the MJO. One objective of
this study is to see how this climate-state behavior in-
fluences the MJO forecast skill in the extended range of
7–30 days.

Wheeler and Hendon (2004; hereafter WH04) devel-
oped an MJO index based on the first two combined
EOFs of the meridionally averaged equatorial outgoing
longwave radiation (OLR) and zonal winds at 850 and
200 hPa. An advantage of this index is that most of the
low-frequency signal and structure of the MJO can be
isolated from the observational and forecast data with-
out the use of temporal filtering as has been used in
many previous MJO-related studies, and is thus feasible
for real-time MJO monitoring and prediction. We will
apply this approach as we analyze the predictive skill in
the two dynamical models.

In section 2 the model and datasets are briefly de-
scribed. The model climatology, low-frequency vari-
ability, and their comparisons with the observations are
shown in section 3. The isolation of the MJO using a
combined EOF analysis is discussed in section 4. In
section 5, measures of forecast skill are introduced. Sec-
tion 6 presents the results of MJO forecast skill pro-
duced by the two models. Section 7 gives a summary
and provides some discussion.

2. Models and data description

The forecast data are the output of two atmospheric
models participating in the seasonal forecast experi-
ments conducted as part of the second phase of the
Canadian Historical Forecasting Project (HFP2; Der-
ome et al. 2001; Lin et al. 2007). The two models are the
third generation of the general circulation model
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(GCM3) of the Canadian Centre for Climate Modeling
and Analysis (CCCma) and the Global Environmental
Multiscale (GEM) model of Recherche en Prévision
Numérique (RPN).

GCM3 shares many basic features with its precedent
version (GCM2), which was used in previous studies for
climate simulations (e.g., Boer et al. 1984; McFarlane et
al. 1992). It is a global spectral model, with triangular 63
(T63) horizontal resolution and 32 levels in the vertical.
In GCM3 the cumulus parameterization of Zhang and
McFarlane (1995) is implemented. GEM is an opera-
tional model employed at the Canadian Meteorological
Centre (Côté et al. 1998a,b). In HFP2, the GEM model
was run at a horizontal resolution of 2° � 2° and 50
vertical levels. It uses the Kain–Fritsch (KF) convective
parameterization (Kain and Fritsch 1990) with only the
threshold parameters being adjusted for the specific
resolution. Neither global model has been tuned spe-
cifically for the tropics.

An ensemble of 10 parallel integrations of 4-month
duration was conducted for the 1969–2003 period using
each model starting from the beginning of each month.
The initial atmospheric conditions were at 12-h inter-
vals preceding the start of the forecasts, taken from the
NCEP–National Center for Atmospheric Research
(NCAR) reanalysis (Kalnay et al. 1996). The first mem-
ber started from 12 h before the start of the forecast,
whereas the 10th member started from 120 h (5 days)
before. This is an acceptable practice for a seasonal
forecast where signals from influences external to the
atmosphere (e.g., SST anomalies) are more important
than the contribution from the initial conditions for a
seasonal mean condition after about 20 days. In the
current study, since we are looking at the MJO forecast
skill, where it is mainly in the first 2 weeks that the role
of the initial condition is crucial, a 5-day lag in the initial
conditions from one ensemble member to another is
too big and the ensemble mean cannot be used as a
forecast. Therefore, in this study, only one ensemble
member is used that was initialized 12 h before the start
of the forecast season, that is, for the integration of
December–March (DJFM), the initial conditions are at
1200 UTC 30 November. Therefore, we have a total of
420 (12 seasons � 35 yr) forecasts from each model.
Since the starting dates are 1 month apart, the MJO
sample members are less dependent to each other than
those that come from a set of more frequent forecasts
(e.g., every day). Therefore, in the statistical signifi-
cance tests that will be applied in the following sections,
we will have a larger number of degrees of freedom
(dofs) than would be found in a sample of the same size
that comes from a set of more frequent forecasts. Glob-
al sea surface temperatures (SSTs) were predicted us-

ing the persistence of the anomaly of the preceding
month; that is, the SST anomaly from the previous
month was added to the time-evolving climate of the
forecast period. The variables analyzed are the daily
data at 0000 UTC for the precipitation rate (PR) and
the zonal winds at 850 (u850) and 200 hPa (u200).

Since we do not have a long control run for each
model, the last 3 months of each forecast are used to
analyze the climatological behavior of each model,
when the memory from the initial condition is largely
forgotten. In the case of the wavenumber–spectrum
analysis, the first 20 days’ worth of data are not used.
Therefore, a total of 1260 (12 seasons � 3 months � 35
yr) months of data are available to represent a near-
climate-state run for each model. Forecast data of the
first 30 days are utilized to examine the forecast skill of
the MJO.

The four-times daily precipitation rate (PR), and the
zonal winds at 850 and 200 hPa from the NCEP–NCAR
reanalysis, are used to calculate the climatological fea-
tures for comparison with the models, to derive the
combined EOFs that will serve as projection bases to
get the MJO index, and as the verification. Although
the precipitation rate in the NCEP–NCAR reanalysis
data is model output instead of observations, it is pre-
sumably consistent with other variables in the model
used to generate the reanalysis. It has been shown that
on an interannual time scale, the tropical PR agrees
reasonably well with the observations (Lin et al. 2005).
The NASA Global Precipitation Climatology Project
(GPCP) 1° daily precipitation estimates (Huffman et al.
2001) are used as the observed precipitation rate when
comparing the models’ low-frequency variability in PR
with the observations. The GPCP data from 8 yr (1997–
2004) are available.

3. Simulated tropical low-frequency variability

a. Simulated low-frequency variability

The MJO is the dominant mode of the intraseasonal
variability in the tropics. The simulated tropical low-
frequency variabilities in GEM and GCM3 are pre-
sented and compared with the observations in this sec-
tion. As described in section 2, the data from the last 3
months of each forecast are used to represent the cli-
matological behavior in the model, since we do not
have a long control run for each model. Analysis is
done for the winter half-year and summer half-year
separately, where the winter half-year refers to Novem-
ber to the next April and the summer half-year spans
from May to October.

To extract the tropical low-frequency variability, a
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Fourier filter that passes variabilities with 20–90-day
periods is applied to the observational and model data.
The variances between the filtered u200 result from the
models and the NCEP–NCAR reanalysis data in boreal
winter and summer are presented in Fig. 1. As ex-
pected, the variance of the upper zonal wind variability
is large in middle latitudes and relatively small in the
tropics. The minimum variance occurs over the Indian
Ocean and western Pacific. In boreal winter, a large
low-frequency zonal wind variance can be found over

the equatorial eastern Pacific, which may be associated
with an extratropical influence and variability in the
zonal outflow of MJO-related convection in the Mari-
time Continent and western Pacific regions. GEM
simulated the upper zonal wind variability very well,
whereas the large variability over the eastern equatorial
Pacific is missing in the GCM3 simulations.

The variances of the filtered u850 are shown in Fig. 2.
In boreal winter, a large low-frequency variance of low-
level zonal wind is found in the tropical Indian Ocean,

FIG. 2. Variances of low-frequency (20–90 days) variability of u850 for NCEP–NCAR reanalysis, GEM, and GCM3 for (left) boreal
winter and (right) boreal summer. The contour interval is 3 m2 s�2. Areas with variances greater that 6 m2 s�2 are shaded.

FIG. 1. Variances of low-frequency (20–90 days) variability of u200 for the NCEP–NCAR reanalysis, GEM, and GCM3 for (left)
boreal winter and (right) boreal summer. The contour interval is 8 m2 s�2. Areas with variances greater that 24 m2 s�2 are shaded.
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the Maritime Continent, and the western Pacific sector.
In boreal summer, the maximum variance is shifted to
about 10°N, reflecting the low-frequency variability of
the summer Indian monsoon circulation. Both GEM
and GCM3 seem to be able to represent reasonably
well the low-level zonal wind low-frequency variability.
From Fig. 2e, it can be seen that GEM has an above
normal bias in its low-frequency variance in the western
Pacific during the boreal summer.

Figure 3 presents the variances of the filtered pre-
cipitation rates in the two model simulations and in
GPCP observations. In general, the variance of the low-
frequency variability in PR is consistent with that in the
low-level zonal wind (Fig. 2). Strong variability in the
MJO frequency range is reproduced in the tropical In-
dian Ocean, Maritime Continent, and western Pacific
regions by the two models. The variance of PR in the
models tends to have a positive bias compared with the
observations, although the fidelity of the observed PR
is also difficult to assess. In addition, the GPCP obser-
vational data cover a shorter period than do the model
data.

In summary, both GEM and GCM3 have a tropical
climatology that agrees in general with the observa-
tions. GEM is slightly better in simulating the time
mean zonal wind in magnitude. Zonal winds related to
the summer Indian monsoon are too strong in GCM3.
Both models reproduce strong low-frequency variabil-
ity in low-level winds and precipitation rates in the
tropical Indian Ocean, Maritime Continent, and west-
ern Pacific regions that may be related to the MJO.

b. Wavenumber–frequency spectral analysis

It has been observed that a significant part of the
tropical convective activity is organized in waves that
are consistent with the theory of equatorially trapped
waves within the linear shallow-water framework of
Matsuno (1966) and Lindzen (1967). Through the
analysis of the wavenumber–frequency spectrum using
the OLR data, Wheeler and Kiladis (1999, hereafter
WK) were able to identify the convectively coupled
tropical waves from the background noise, including
the Kelvin, n � 1 equatorial Rossby (ER), mixed
Rossby–gravity (MRG), n � 0 eastward inertia–gravity
(EIG), and n � 1 westward inertia–gravity (WIG) and
n � 2 WIG waves, where n is the meridional mode
number. It was found that the wavenumber–frequency
spectrum distributions of the waves match well the dis-
persion curves of the equatorially trapped wave modes
with shallow equivalent depths of the order of 25 m.

To compare the behavior of the tropical wave activity
in GCM3 and GEM, the technique of WK is applied to
the precipitation rate record for the two models. The
data used for each 4-month forecast are the 96-day seg-
ments after the first 20 days of integration, when the
models fluctuate about a near-equilibrium state. As the
linear equatorial waves are either symmetric or anti-
symmetric about the equator, the data are first decom-
posed into these two parts. A gridded field PR, which is
a function of latitude, �, can be expressed as PR(� ) �
PRA(� ) � PRS(� ), where PRA(� ) � [PR(� ) �
PR(�� )]/2 is the antisymmetric component and

FIG. 3. Variances of low-frequency (20–90 days) variability of PR for GPCP data, GEM, and GCM3 for (left) boreal winter and
(right) boreal summer. The contour interval is 10 mm2 day�2. Areas with variances greater that 20 mm2 day�2 are shaded.

4134 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



PRS(� ) � [PR(� ) � PR(�� )]/2 is the symmetric com-
ponent. We first decompose the precipitation rate into
its antisymmetric and symmetric components for each
latitude from 15°S to 15°N. Then, the wavenumber–fre-
quency spectrum is calculated for each latitude. Finally,
the power is averaged over all available time segments
and is summed for the latitudes between 15°S and 15°N.

The background spectrum is estimated by averaging
the power of the symmetric and antisymmetric spectra
and smoothing many times with a 1–2–1 filter in fre-
quency and wavenumber as in WK. The raw spectra are
then divided by the background spectrum to obtain the
estimation of the signal standing above the background
noise. For each model, 67 segments from a random
selection are used. Based on the crude estimation of the
degrees of freedom by WK with the same amount of
nonoverlapping segments, the signal can be considered
statistically significant at a 95% level if it stands at 1.1
times the background level. Calculations using a set of

67 different segments were conducted and it was found
that the wavenumber–frequency spectrum is not sensi-
tive to the choice of segments.

The left and right panels of Fig. 4 show, respectively,
the ratio of the raw symmetric and antisymmetric wave-
number–frequency spectra to the background spectrum
for GEM. The theoretical dispersion curves for the
shallow-water wave modes are superimposed on the
spectra, corresponding to equivalent depths of 12, 25,
and 50 m. In the symmetric spectra, signals of Kelvin
and ER waves can be clearly identified. In the antisym-
metric spectra, there are MRG and EIG waves. In the
wavenumber range of 1–6, statistically significant large
values of spectra at a constant frequency with an east-
ward propagation and a period near 40 days represent
the MJO signal, especially in the symmetric spectra.
The spectra distribution in the GEM simulations agrees
reasonably well with that of the observations (see Fig. 3
in WK), indicating that GEM, with its current physics

FIG. 4. (left) The wavenumber–frequency spectrum of the 15°S–15°N symmetric component of PR divided by the background
spectrum for GEM; (right) as in the left panel but for the antisymmetric component. Superimposed are the dispersion curves of the odd
(even) meridional mode numbered equatorial waves for the equivalent depths of h � 12, 25, and 50 m.

NOVEMBER 2008 L I N E T A L . 4135



parameterization schemes, is able to represent a variety
of convectively coupled equatorial waves. As pointed
out by previous studies (e.g., Majda and Biello 2005;
Moncrieff 2004), interactions between different scales
may provide an important energy source to the low-fre-
quency variability. The spectrum peaks in GEM corre-
spond well with shallow-water modes that have equiva-
lent depths of between 25 and 50 m, whereas in the
observations the equivalent depth is around 25 m. This
means that the phase speeds for tropical waves in GEM
are a little too fast compared to those in the observa-
tions; for example, for Kelvin waves the phase speed is
about 19 m s�1 for GEM compared to about 16 m s�1

for the observations.
The ratio of the raw wavenumber–frequency spec-

trum to the background spectrum for GCM3 is illus-
trated in Fig. 5. There are almost no significant wave
signals that stand out from the background spectrum to
be found in GCM3. The lack of a wave signal in Fig. 5
does not mean that there is no low-frequency variability
in GCM3. In fact, as shown in the last subsection,

GCM3 is similar to GEM in simulating the 20–90-day
variability variances of PR and u850. However, Fig. 5
indicates that this low-frequency variability is not dis-
cernible from the model’s background noise.

In Lin et al. (2006), a similar analysis was conducted
to compare the tropical intraseasonal variability of 14
coupled climate models participating in IPCC AR4.
About half of the models appear to have signals of
convectively coupled equatorial waves, but the waves in
most of the models are too weak and the phase speeds
are generally too fast. It is still an open question as to
why some models are doing better than others. The
coupled version of GCM3 (CGCM), though with lower
resolution than in the AGCM in the present study, is
among the 14 models compared. A nearly identical
result was obtained for CGCM as in GCM3; that it
has very weak wave signals standing out from the
background spectrum, indicating that the coupling
process with the ocean does not help to improve the
situation. Through the analysis of a climate integra-
tion of the CCCMA GCM2, the precedent version of

FIG. 5. Same as in Fig. 4 but for GCM3.
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GCM3, which employs the same convective parameter-
ization, Sheng (1995) also found that the simulated
MJO signal is too weak compared with the observa-
tions.

4. Isolation of the MJO signal

A combined EOF analyses is performed based on the
technique of WH04, except that instead of using OLR
to represent the tropical convection, we use the PR,
because GCM3 and GEM did not output OLR in
HFP2. Starting from the unfiltered observed daily av-
eraged data of the NCEP–NCAR reanalysis for PR and
zonal winds at 850 and 200 hPa from 1979 to 2003, the
seasonal cycle, which is the time mean and first three
harmonics of the daily climatology, is first removed for
each grid point. Then, the 120-day mean of the last 120
days for each day is removed. By removing the previous
120-day average, most of the interannual variability,
including that related to the ENSO and variability with
even longer time scales, is removed. Next, a meridional
band average near the equator (15°S–15°N) is deter-
mined for the PR, u850, and u200, while retaining the
longitudinal variation for the three fields. After that,
each variable is normalized by its own zonal average of
temporal standard deviation, and the three fields are
then combined. As pointed out in WH04, this normal-
ization is necessary to ensure that each field contributes
equally to the variance of the combined vector.

In addition to the use of PR instead of OLR, the
other difference between our analysis and that of
WH04 is that we do not remove the variability part that
is linearly associated with an ENSO index before re-
moving the previous 120-day average, as WH04 did.
The ENSO index was a time series of the first rotated
EOF of the SST over the Indian and Pacific sectors
calculated operationally at the Australian Bureau of
Meteorology. As will be discussed later, this step is sen-
sitive to the definition of the ENSO index. On the other
hand, the subtraction of the previous 120-day average is
effective in removing the long-term variabilities that
include the ENSO signal.

Shown in Fig. 6 are the longitudinal distributions of
the leading two EOFs of the combined fields of PR,
u850, and u200. EOF1 and EOF2 explain 12.2% and
11.1% of the total combined variance, respectively.
They are well separated from the rest of the EOFs
according to the criterion of North et al. (1982) (EOF3
explains only 5.3% of the variance). Both EOF1 and
EOF2 are characterized by wavenumber 1 in the zonal
wind. The zonal winds at 200 hPa are out of phase with
those at 850 hPa, indicating a baroclinic structure. For
EOF1, the zonal winds at both levels change sign near

150°E and the Greenwich meridian. Near 150°E, an
upper zonal divergence (easterly wind anomalies to the
west over the Indian Ocean and westerly wind anoma-
lies to the east across the Pacific) and a lower zonal
convergence (westerlies to the west and easterlies to
the east) occur, which favors an enhanced upward mo-
tion and precipitation. The opposite situation is ob-
served near the Greenwich meridian, where there are
an upper zonal convergence and a lower zonal diver-
gence, and thus a downward airflow anomaly is implied.
The structure of EOF2 is almost in quadrature to that
of EOF1, with the zonal divergent–convergent centers
moved eastward. The precipitation structure is a little
noisy. In EOF1, enhanced precipitation can be seen
near the Maritime Continent longitudes, consistent
with the upper zonal divergence and lower-level zonal
convergence near 150°E. In the case of EOF2, reduced
precipitation is observed in the eastern Indian Ocean
area, which is collocated with the upper zonal conver-
gence and lower zonal divergence. The power spectra
of the principal components of EOF1 and EOF2 (PC1
and PC2) have a peak in the 30–80-day band, with
about 63% of the total variance occurring in this band.
The lag correlation between PC1 and PC2 peaks (0.74)
when PC1 leads PC2 by 10 days, and reaches its maxi-
mum negative value (�0.77) when PC1 lags PC2 by 10
days, indicating that EOF1 and EOF2 represent an
eastward-propagating signal with a period of about 40
days.

Despite the differences in approach, our resulting
structures of EOF1 and EOF2 for u200 and u850 are
almost identical to those of WH04 (see their Fig. 1).
The temporal correlation between the daily principal
component time series of the first EOF (PC1) with that
of WH04 for the period of 1979–2003 (obtained from
the Australian Bureau of Meteorology Web site) is
0.96, and it is 0.97 for PC2. The two leading EOFs are
consistent with those obtained in previous studies using
bandpass-filtered single-variable data (e.g., Lau and
Chan 1986), which represent the MJO at different
phases, and their corresponding PCs vary mostly on the
intraseasonal time scale of the MJO. Since no temporal
filtering is used here in obtaining the combined EOFs,
they are suitable for real-time application. As in WH04,
our pair of PC time series are also called the real-time
multivariate MJO series 1 (RMM1) and 2 (RMM2). It
should be noted that although the MJO dominates the
RMM indices, some of the variance in actual MJO
events may not be included directly in the indices (e.g.,
its seasonality and northward propagation in the Asian
monsoon region during summer, etc.).

In the verification for the MJO forecasts, the obser-
vational data are the once-daily results for 0000 UTC
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taken from the NCEP–NCAR reanalysis, which match
the output time of the models. The same steps as de-
scribed above are applied to both the observed and the
forecast data to calculate the observed and forecast
RMM1 and RMM2. In forecasts, when we remove the
interannual variability part, we do not have 120 days of
data. So we use the observations before the start of the
integration to replace those days missing; that is, when
removing the 120-day mean for the forecast at day n,
the average of the 120 � n � 1 days of observational
data preceding the forecast and the forecast data from
day 1 to day n � 1 is used. Both the observed and
forecast RMM1 and RMM2 are normalized by the stan-
dard deviations of the observed RMM1 and RMM2.

5. Measures of skill

Temporal correlations between the forecasts and
verification fields at each grid point are used to evalu-
ate the general model forecast quality. Before doing so,

the annual cycle and interannual variability are re-
moved with the approach as described in the previous
section, to focus on the intraseasonal time scale. The
analysis is confined to the global tropics (30°S–30°N),
as the MJO occurs mainly in the tropical region.

To measure the forecast quality of the bivariate MJO
index, three metrics are used: the correlation skill
(COR), the root mean squared error (RMSE), and the
mean square skill score (MSSS).

a. Correlation skill

The correlation skill (COR) is defined as

COR��� �

�
i�1

N

	a1i�t�b1i�t� � a2i�t�b2i�t�


��
i�1

N

	a1i
2 �t� � a2i

2 �t�
��
i�1

N

	b1i
2 �t� � b2i

2 �t�


,

�1�

FIG. 6. Longitudinal distributions of EOF1 and EOF2 from the combined analysis of
PR, u850, and u200.
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where a1i(t) and a2i(t) are the observed RMM1 and
RMM2 at day t, and b1i(t) and b2i(t) are their respective
forecasts, for the ith forecast with a �-day lead. Here, N
is the number of forecasts.

COR(�) measures the skill in forecasting the phase of
the MJO, which is insensitive to amplitude errors.
COR(�) is equivalent to a spatial pattern correlation
between the observations and the forecasts when they
are expressed by the two leading combined EOFs.

b. RMSE

The root-mean-square error (RMSE) can be written as

RMSE��� ��1
N �

i�1

N

�	a1i�t� � b1i�t�

2 � 	a2i�t� � b2i�t�


2.

�2�

It takes into account errors in both phase and ampli-
tude. RMSE is equivalent to the spatially averaged
root-mean-square difference between the observations
and the forecasts when they are expressed by the two
leading combined EOFs.

As RMM1 and RMM2 are normalized to their ob-
served standard deviations, the saturated value of
RMSE when � is so big that the forecast and observa-
tion are no longer correlated is 2, assuming the fore-
cast RMMs have the same standard deviations as the
observations. Similarly, for a climatological forecast
(RMM1 � 0 and RMM2 � 0), the RMSE is �2.

c. MSSS

The mean square skill score (MSSS; Murphy 1988) is
defined as

MSSS��� � �1 �
MSEf���

MSEc
�, �3�

where

MSEf��� �
1
N �

i�1

N

�	a1i�t� � b1i�t�

2 � 	a2i�t� � b2i�t�


2

is the mean square error of the model forecast and

MSEc �
1
N �

i�1

N

	a1i
2 �t� � a2i

2 �t�


is the climatological variance. MSSS provides a relative
level of skill for the MJO forecast compared to a cli-
matological forecast that predicts no MJO signal. A
perfect forecast (MSEf � 0) has an MSSS of 1, a fore-
cast with an error as big as the climatological variance
(MSEf � MSEc) has a zero MSSS, and when a forecast

is doing worse than the climatological forecast, a nega-
tive MSSS is obtained.

6. MJO forecast skill in GEM and GCM3

As discussed in section 3, GEM simulates reasonably
well the tropical wave spectral peaks, whereas in
GCM3 the tropical waves cannot be easily separated
from the background noise. Here, we compare the fore-
cast skill in these two models to see how the MJO fore-
cast is influenced by the model climatological behavior.

a. Skill calculated at grid points

Two types of forecast skill are assessed: 1) the origi-
nal daily forecasts against the total fields of observa-
tions and 2) the 2D MJO forecasts against the observed
MJO signal. The purpose of the first type of skill is to
assess the overall quality of the models in predicting
tropical variabilities that include all time scales shorter
than a season, while the second is designed to concen-
trate on the MJO forecasts. The 2D MJO signal is re-
constructed based on a linear regression with the two
leading PCs of the combined EOF. Taking u200 as an
example, we first use the linear regression equation be-
tween the observed u200 and the two PCs to obtain the
two regression coefficients at each grid point. Then,
with these regression coefficients and RMM1 and
RMM2 of the forecasts and observations, 2D u200
fields can be constructed that contain the MJO signal.
The temporal correlation between the forecast and the
verification at each grid point is calculated for all the
forecasts over the whole period (a total of 12 months �
35 yr � 420 forecasts).

Figure 7 illustrates the area-averaged (30°S–30°N)
correlation skill for PR, u850, and u200 by GEM and
GCM3 as a function of forecast lead time. Shown in
thin solid and dashed curves are the correlation skill of
the total tropical flow by GEM and GCM3, respec-
tively, whereas shown by thick solid and dashed lines
are the MJO forecast skill of GEM and GCM3, respec-
tively. As described above, the total tropical flow here
contains many scales of variability in addition to the
MJO. It is clear that the forecast skill for the MJO is
better than that for the tropical flow as a whole. The
skill for the total flow varies significantly from one vari-
able to another. The PR has the lowest skill score, and
the forecast skill for u200 is the best. By construction,
the MJO forecast skill is the same for all of the vari-
ables. We also note that GEM is doing somewhat better
than GCM3 in forecasting both the total tropical flow
and the MJO when the lead time is shorter than 15
days. After 15 days, there is an indication that the cor-
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relation skill for the MJO forecast by GCM3 is higher
than that by GEM. As will be discussed (in Fig. 10), in
some areas the correlation skill in GCM3 extends to a
longer lead time.

The spatial distributions of the correlation skill of the
total tropical u200 field are presented in Fig. 8 for GEM
and GCM3 at forecast lead times of 4.5, 7.5, and 10.5
days. To estimate the significance level for the correla-
tion, we consider the fact that the correlation is calcu-
lated from all 420 of the forecast cases that start from
initial conditions 1 month apart. Assuming that the
MJO signal has no autocorrelation at a lag of 75 days,
there is one independent case for every 2.5 forecasts.
Therefore, we have about 168 independent cases. Ac-
cording to a Student’s t test, a correlation of 0.2 is re-
quired to pass a significance level of 0.01. The skill
distribution in GEM is similar to that in GCM3. In
general, the forecast skill for the total flow of u200 is
lower in the tropics than in the middle latitudes, as is
evident in the skill for lead times shorter than about a
week (Figs. 8a, 8b, 8d, and 8e). The synoptic-scale baro-
clinic eddies in the middle latitudes are better predicted
than are perturbations in the tropics. The lowest fore-
cast skill is observed in the equatorial Indian Ocean and
western Pacific where the MJO is active. In the tropical
region, the best forecast skill can be found over the
eastern Pacific and tropical Atlantic. This is probably
caused by the penetration of middle-latitude baroclinic
waves into these regions where climatological wester-
lies are located, which is favorable for the equatorward
propagation of extratropical waves (e.g., Webster and
Holton 1982; Hoskins and Yang 2000). On the other
hand, in the tropical Indian Ocean and western Pacific,
upper easterlies constitute a barrier for tropical–extra-

tropical interactions (e.g., Brunet and Haynes 1996),
and thus almost no waves exist in these regions of ex-
tratropical origin that could provide a higher forecast
skill. The spatial distribution of the forecast skill of the
total tropical flow for u850 is similar to that of u200, and
the skill for the total field of PR is low (not shown).

Figure 9 shows the spatial distribution of the forecast
skill for the reconstructed u200 of the MJO. High cor-
relation skill is found in the tropical Maritime Conti-
nent longitudes, and over a large tropical area extend-
ing from the eastern Pacific eastward to the western
Indian Ocean. Significant forecast skill over 0.5 is
present in these regions even at a lead time of 10.5 days.
Minimum skill is observed in the eastern Indian Ocean
and western Pacific. Although the spatial distributions
of skill in the two models are similar, GEM is doing
noticeably better than GCM3. At 4.5-day (7.5 day) lead
time, GEM has a correlation skill greater than 0.6 (0.4)
everywhere, while in GCM3 correlations smaller than
0.6 (0.4) are found over the western Pacific, Africa, and
western Indian Ocean. At 10.5-day lead time, bigger
areas of correlation greater than 0.5 are observed in
GEM than in GCM3. The skill distribution for the
MJO-reconstructed u850 (not shown) is similar to that
of the u200. From the forecast skill for the recon-
structed PR of the MJO (not shown), significant fore-
cast skill in the tropical Indian Ocean is present in the
GEM forecasts. Even at a lead time of 10.5 days, a large
area of correlation skill greater than 0.5 is found in this
region. GCM3, however, is less skillful. Almost no cor-
relation larger than 0.5 can be found at a lead time of
10.5 days for GCM3.

To further investigate the tropical MJO forecast skill
as a function of forecast lead time, plotted in Fig. 10 is

FIG. 7. Area-averaged anomaly correlation coefficients between the forecasts and the observations for PR, u850, and u200. Solid curves
are for GEM, and dashed curved for GCM3. Thick curves are for MJO forecasts, and thin curves are for forecasts of total flow.
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the longitude–lead time distribution of the correlation
skill for the MJO-reconstructed u850, meridionally av-
eraged between 15°S and 15°N. The longitudinal distri-
bution of the forecast skill is consistent with Fig. 9,
where relatively high correlation skill is located in the
Maritime Continent longitudes, and over longitudes ex-
tending from the eastern Pacific eastward to the west-
ern Indian Ocean. Interestingly, there is an indication
that the forecast skill over the Indian Ocean and Mari-

time Continent area moves eastward with an increase in
forecast lead time, from the eastern Indian Ocean at the
beginning of the forecast to near the date line in about
20 days. GCM3 has better skill after about 2 weeks.
Near the Greenwich meridian and in the western Pa-
cific region, correlation skill greater than 0.3 remains
until a 24-day lead time in GCM3, while in GEM the
same skill lasts about 20 days. This result seems to be
consistent with that of Kharin and Zwiers (2004), who

FIG. 9. Same as in Fig. 8 but for forecasts of the MJO-reconstructed u200.

FIG. 8. Temporal correlation between the total field of forecast u200 and that of the observations at lead times of 4.5, 7.5, and 10.5
days for (left) GEM and (right) GCM3. Light shading areas are for correlations greater than 0.3, medium shading areas for those greater
than 0.5, and heavy shading areas for correlations greater than 0.7.
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analyzed the forecast skill as a function of time scale in
HFP1 using GCM2 and an earlier version of the nu-
merical weather prediction model of the Canadian Me-
teorological Centre (the Short-Range Ensemble Fore-
cast model, SEF). They found that SEF produces better
500 hPa height and 700 hPa temperature forecasts over
the Northern Hemisphere than did GCM2 in the first
1–2 weeks, whereas GCM2 performs slightly better at
longer time leads. It was argued that the initial condi-
tions are important in the first 1–2 weeks and that the
atmospheric response to boundary forcing becomes
more dominant for longer time leads. In the present
study, however, the interannual variability has been
largely removed. The contribution from the atmo-
spheric response to boundary forcing is not clear. It is
more likely that GCM3 is able to predict well the pat-
tern of some large-amplitude MJO events, which con-
tributes to an improved correlation skill. The eastward
propagation of the forecast skill is likely to be related to
some strong eastward-propagating MJO cases that are
consistently predictable along their paths. It might also
suggest that the models do not initiate new MJO events
well. Similar propagation of forecast skill is found for
the MJO u200, but it is less clear for the precipitation
(not shown).

b. Skill of the MJO index

We now concentrate on the forecasts of the MJO
bivariate index. The skill scores presented in this sec-

tion are calculated for annual data (12 months), winter
seasons of 6 months from November to April, and sum-
mer seasons of 6 months from May to October.

Shown in Fig. 11 is the correlation skill as defined in
(1). The annual skill (Fig. 11a) is identical to the area-
averaged correlation skill of the 2D MJO reconstructed
fields (thick curves in Fig. 7). In general, the correlation
skill is higher in winter than in summer, which might be
expected since the MJO is usually better organized and
is stronger during boreal winter (e.g., Madden 1986). It
is evident that GEM has better forecast skill than
GCM3 in the first 15 days, and the difference is larger
in winter than in summer. If we take a correlation of 0.5
as the minimum for useful skill, GEM produces skillful
forecasts of up to 10 days in winter, while in GCM3 the
skill drops below 0.5 at a lead time of 6 days. After 15
days, the correlation skill for the MJO forecasts by
GCM3, which was designed as a climate model, is
higher than that of GEM.

The results for the RMSE as defined in (2) are pre-
sented in Fig. 12. As can be seen, GEM is superior in
predicting the MJO to GCM3. The error grows much
more slowly in GEM than in GCM3, reaching the satu-
rated value at a lead time of about 20 days in GEM
compared to about 10 days in GCM3. Again, the fore-
cast skill is better in winter than in summer, and the
difference between GEM and GCM3 is more obvious
in winter. In winter forecasts, the RMSE reaches the
climatological forecast value at 10 and 5 days for GEM

FIG. 10. Lead time–longitude distribution of the 15°S–15°N averaged correlation between the MJO-
reconstructed forecast u850 and that of the observations for (a) GEM and (b) GCM3. The contour interval is 0.1.
Areas with correlations greater than 0.3 are shaded.
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and GCM3, respectively. Similar conclusions can also
be drawn from the MSSS results (not shown).

c. Skill stratified by the MJO strength

The amplitude of the MJO is defined as amp �
�RMM12 � RMM22. In this section, we look at the de-
pendence of the forecast skill on the MJO amplitude in
the initial conditions. Cases of strong and weak MJO
forecasts are determined based on the observed MJO
amplitude in the initial conditions. For a strong MJO,
the initial MJO amplitude is greater than 1, whereas for
a weak MJO the amplitude is smaller than 1. In all 420
forecasts during the whole period, we have 250 strong
MJO cases and 170 weak MJOs.

Figure 13 shows the correlation skill for the MJO

index of the forecast cases with strong and weak MJO
signals at the initial state by GEM and GCM3. It is seen
that for both models up to a forecast lead time of about
15 days the forecast skill is significantly higher when the
initial conditions have a strong MJO signal. After 15
days, the correlation skill for weak MJO cases seems to
overpass that for strong MJOs. However, the usefulness
of the MJO forecast beyond 15 days is questionable
with such a low value of correlation skill. The same
conclusion can be reached from the predictive skill
measured by MSSS (not shown).

The dependence of the forecast skill on the MJO
amplitude is consistent with the results from some of
the previous studies. For example, using the early Na-
tional Meteorological Center (NMC) medium-range
forecasts, Chen and Alpert (1990) showed that the

FIG. 11. Correlation skill for the bivariate MJO index. Solid curves are for GEM, and dashed curves for GCM3. The horizontal line
represents a correlation skill of 0.5.

FIG. 12. RMSE skill for the bivariate MJO index. Solid curves are for GEM, and dashed curves for GCM3. The horizontal line
represents RMSE skill of �2.
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model forecast skill of the MJO reached about 10 days
when the MJO amplitude was large. However, when
the MJO amplitude was weak, the forecast skill was
poor. Similar results were obtained in other studies
(e.g., von Storch and Xu 1990; Jones et al. 2000).

In addition to the forecast skill of the MJO, we also
look at the predictive skill of the total flow, that is,
including all time scales besides the MJO. This is to
assess how the overall performance of the dynamical
models in the tropics depends on the amplitude of the
MJO. Figure 14 presents area-averaged (30°S–30°N)
correlation skill for the total u200 field by GEM and
GCM3 with strong and weak MJO signals at the initial
forecast time. Interestingly, both models perform

slightly better when there is a weak MJO signal in the
initial conditions, though its statistical significance is
unclear. A strong initial MJO signal does not help to
improve the overall forecast skill on the intraseasonal
time scale in the tropics. Similar results are obtained for
the skill of the total u850 and PR fields (not shown).

The above result is clearly in contrast to forecasting
the MJO signal itself where better skill is achieved
when the model is initialized with a strong MJO. Using
five winters of NCEP dynamical extended-range fore-
casts, Hendon et al. (2000) analyzed the systematic
forecast errors associated with strong MJO episodes.
They found that the forecast skill is systematically re-
duced during active periods of the MJO compared to

FIG. 14. Area-averaged anomaly correlation coefficient between the total field of forecast u200 and that of the
observations for strong MJOs (solid curves) and weak MJOs (dashed curves).

FIG. 13. Correlation skill of the bivariate MJO index for strong MJOs (solid curves) and weak MJOs (dashed
curves).
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quiescent times. They attributed this to the failure of
the dynamical model in capturing the eastward propa-
gation of the tropical precipitation and circulation
anomalies associated with the MJO when the forecast is
initialized with an active MJO. Our results partly sup-
port their findings in that the overall forecast skill for
the total tropical field is slightly reduced when the fore-
cast is initialized with a strong MJO compared to a
weak MJO. However, this reduction in overall skill is
not caused by a deteriorated MJO forecast. On the
contrary, in both of our models, the MJO is better pre-
dicted when a strong MJO signal exists in the initial
conditions. It is likely that tropical variabilities on time
scales different from that of the MJO are less predict-
able when the MJO is active. It also implies that strong
MJO episodes may be initialized from strong interac-
tions with variabilities of shorter time scales that are

less predictable, and that the MJO amplifies those less-
predictable, shorter time-scale activities.

d. Skill stratified by the MJO phase

The MJO phase space is defined in a similar way as in
WH04. An MJO state at a given time is represented as
a point in the two-dimensional phase space of RMM1
and RMM2. The distance of a point from the origin can
be considered as the MJO amplitude, and an eastward
propagation of the MJO is reflected by a counterclock-
wise movement in the phase space plot. As an example,
plotted in Fig. 15 are the trajectories of the observed
(solid line) and forecast (dashed line) MJOs in the
phase space for the 45 days starting from 1 December
1997. The MJO state at 0000 UTC for each day is
marked by a filled (empty) circle for the observations

FIG. 15. Trajectories of the observed (solid curve with closed circles) and forecast (dashed curve with
open circles) MJO in the RMM1–RMM2 phase space at 0000 UTC daily over the course of 45 days
starting from 1 Dec 1997. The forecast is initialized at 1200 UTC 30 Nov 1997. Eight defined regions of
the phase space are marked, along with the region of weak MJO.
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(forecast). The forecast is initialized at 1200 UTC 30
November 1997.

To demonstrate the dependence of forecast skill on
the phase of the MJO, presented in Fig. 16 are the skill
scores of the MJO index for forecasts initialized with an
MJO that is strong (amplitude greater than 1) and has
a phase in one of the two phase groups: 1) phases 1–3 or
2) phases 4–8. An MJO in phase group 1 has anomalous
convective activity in tropical Africa and the Indian
Ocean, while that in phase group 2 has enhanced con-
vection in other tropical regions. There are 109 fore-
casts in phase group 1 and 145 in phase group 2 among
all the forecasts during the whole period. It can be seen
that both GEM and GCM3 have better MJO forecast
skill when the initial conditions have an MJO signal
with a phase in phase group 1 (i.e., phases 1, 2, or 3). To
test the influence of the difference in the sample sizes,
a random selection of 109 forecasts from the 145 fore-
casts in phase group 2 was used to recalculate the skill.
Almost the same result as in Fig. 16 was obtained. It
may not be surprising to find good forecast skill when
the MJO is in tropical Africa and the Indian Ocean
since these are the regions where the MJO signal is
strong, well developed, and has a relatively slow east-
ward-propagating speed (e.g., Zhang 2005). However,
the average initial MJO amplitude for the selected fore-
casts in phase group 1 is 1.63, which is not dramatically
larger than that for phase group 2, which is 1.58. This
indicates that the skill dependence on the MJO phase is
largely determined by the convection location.

The difference in correlation skill between phase
groups 1 and 2 (left panel in Fig. 16) is larger for GCM3
than for GEM. For forecasts of phases 1–3 (4–8),
GCM3 has better (worse) correlation skill than GEM.
As the correlation measures the skill in forecasting the

pattern and is insensitive to amplitude errors, this indi-
cates that GCM3 predicts better the pattern when it is
initialized with an MJO of phases 1–3. As for the MSSS
(right panel in Fig. 16) that takes into account errors in
both the pattern and amplitude, GEM has better skill
for both phase groups.

7. Summary and discussion

In this study we have examined the forecast skill of
the MJO produced by two atmospheric models in the
Canadian seasonal hindcast experiment HFP2: GCM3
and GEM. The overall skill for the MJO forecasts in the
two dynamical models is at about the same level as was
obtained by previous studies (e.g., Chen and Alpert
1990; Jones et al. 2000; Hendon et al. 2000), with a
skillful forecast up to about a 1-week lead time. This
level of skill seems to be lower than that obtained with
purely statistical models (e.g., Waliser et al. 1999). A
significant difference in skill is found between these two
models. The difference is larger in winter than in sum-
mer, when the GEM model produces skillful MJO fore-
casts up to a lead time of close to 10 days, while the
same level of skill in GCM3 extends only to a lead time
of about 6 days.

As the same setup for the hindcast experiment was
used in the two models, that is, the same SST anomaly
and the same initial conditions, the difference in fore-
cast skill is likely coming from the models’ ability to
sustain the intraseasonal variability. The model that
forecasts the MJO with better skill has a significantly
better representation of the tropical convectively
coupled waves (including the MJO itself) in its near-
climatological integration. This highlights the impor-

FIG. 16. (left) Correlation skill of the bivariate MJO index for MJOs in phase space regions 1–3 (solid curves)
and in phase space regions 4–8 (dashed curves). Thick curves are for GEM and thin curves for GCM3. (right) As
in the left panel but for MSSS skill.
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tance of improving numerical model’s representation of
tropical waves.

The connection between the tropical waves and the
MJO is possibly through an upscale transfer of energy
(e.g., Majda and Biello 2005). The present study shows
that a numerical model with a better representation of
the tropical waves does simulate and forecast the MJO
better, in agreement with the upscale energy transfer
hypothesis. On the other hand, the possibility cannot be
excluded that the characteristics of GEM allow the
model to have a better representation of both the equa-
torial waves and the MJO without an upscale energy
transfer. A further detailed analysis of the multiscale
interaction in the tropics is necessary to fully under-
stand the connection between the MJO and tropical
waves.

It has been pointed out in many previous studies that
convective parameterization in an atmospheric GCM is
one of the most important factors determining whether
a reasonable MJO variability can be simulated (e.g.,
Inness and Gregory 1997; Wang and Schlesinger 1999;
Liu et al. 2005). It is possible that the different patterns
of behavior seen in simulating the tropical waves and
the MJO between GEM and GCM3 are related to the
different convective parameterization schemes utilized
in these two models. Using the NCAR Community Cli-
mate Model version 3.6 (CCM3), which employs the
deep convective parameterization of Zhang and Mc-
Farlane (1995), Maloney and Hartmann (2001) also
found that the simulated MJO is much weaker than in
the observations. Using the revised Zhang–McFarlane
convection parameterization scheme that implements a
new closure assumption and convection trigger, Zhang
and Mu (2005) were able to obtain an improved simu-
lation of the MJO in CCM3. It is likely that the Kain–
Fritsch (KF) convective parameterization implemented
in GEM contributes to the reasonable simulation of the
tropical waves and MJO variability. However, among
many studies, an agreed upon result on how the MJO is
sensitive to the convective parameterization scheme
has not been achieved. For example, Slingo et al. (1996)
suggested that convective schemes closed on buoyancy
tend to produce better MJO signals than those closed
on moisture convergence, whereas some other studies
(e.g., Chao and Deng 1998; Lee et al. 2003) demon-
strated that the moist convective adjustment (Manabe
et al. 1965) scheme produces a stronger MJO variabil-
ity. Wang and Schlesinger (1999) found that the simu-
lated MJO becomes stronger when the relative humid-
ity criterion for convection increases, but Maloney and
Hartmann (2001) pointed out that this relationship
does not hold in CCM3. Obviously, further studies are

needed to clarify the sensitivity of the MJO to convec-
tive parameterization schemes.

In the HFP2, which was designed for seasonal fore-
cast studies, the atmospheric initial conditions were
taken from the NCEP–NCAR reanalysis. It can be ex-
pected that an increase in MJO forecast skill in GEM
and GCM3 could be achieved with an improved initial-
ization. The skill could be further improved if a care-
fully designed ensemble approach were applied that
takes into account the uncertainty in the initial condi-
tions and model errors.

The lack of air–sea coupling in the HFP2 experiment
may also affect the forecast skill of the MJO. Several
observational studies have reported that the MJO os-
cillation is accompanied by significant changes in sur-
face heat fluxes and SST (e.g., Zhang 1996; Woolnough
et al. 2000). However, as demonstrated in most of these
studies, the MJO circulation is likely a driving force for
the intraseasonal variability in the SST. How the SST
feeds back to the MJO and influences its forecast skill
is less clear.
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