In 20 minutes period: Cloud Mergers, Turbulence, Microphysics, Dynamic, and Radiation

Cloud Resolving Model Simulation: can capture observed cloud evolution with improved microphysics and with 250 m grid spacing, 3 second time step
Evolution of Convection and Cirrus Layers

Lidar

CRS 94 GHz

Combined radar and lidar

7 min

~1 hr

Horizontal scale: 150 km

G. Heymsfield
Mesoscale Convective Systems contribute ~50% rainfall globally.

Fraction of estimated rainfall from precipitation features >= 100 km in maximum dimension as measured by the TRMM precipitation radar (PR) from January 1998 through December 2006 using the methodology of Nesbitt et al. (2006).

Importance of MCSs in contribution of global precipitating processes

Mesoscale Convective Systems contribute ~50% rainfall globally
Idealization of a tropical oceanic mesoscale convective system with leading-line/trailing stratiform structure. Parcels of subcloud boundary layer air rise and form the basic convective updrafts. Ambient cloud layer air is entrained into the updrafts. The updraft parcels rise till they lose their boundary by entrainment or by encountering a stable layer in the environment. Entrainment of ambient low equivalent-potential-temperature air weakens updrafts and forms convective-scale downdrafts, which sink to the surface in the convective precipitation zone. Note that the system has three-dimensionality such that the updraft and downdraft trajectories are not collocated, and the convective region contains a “crossover zone” where convective-scale updrafts and downdrafts coexist. Adapted from Zipser (1977).


GATE (1974): Mesoscale Features & Stratiform Precipitation

Schematic of a typical population of clouds over a tropical ocean. Thin arrows represent convective-scale updrafts and downdrafts. Wide arrows represent mesoscale updrafts and downdrafts. Other details and symbols are described in the text. Adapted from Houze et al. (1980).

Where is the origins of growth mechanisms of particles in stratiform region?

Mesoscale ascending and/or horizontal fluxes of hydrometeors from convective region

Schematic of a microphysical processes associated with a tropical mesoscale convective system in its mature stages. Straight, solid arrows indicate convective updraft, wide, open arrows indicate mesoscale ascent and subsidence in the stratiform region. Where vapor deposition and evaporation occur. Adapted from Houze (1989).

### Type of Model (Spatial Scale) | Strengths | Weaknesses |
|--------------------------------|-----------|------------|
| **GCMs** (10^2 km)             | Global Coverage  
Climate Change Assessment | Coarse Resolution  
Cumulus Parameterization |
| **Regional Scale Models** (10^1 - 10^0 km) | Regional Coverage – Regional Climate  
Better parameterization (nesting technology) | No Feedback to Global Circulation  
Case Study |
| **Cloud Resolving Models** (10^0 – 10^-1 km) | Better physics  
Better Treatment of Cloud-Radiation Interaction | No Feedback to Global Circulation  
Small Domain  
Case Study (Field Campaign) |
| **Coupled GCM-CRM (MMF)** (2-4 km) | Global Coverage  
CRM-Based Physics | Computational Cost  
2D CRM Embedded |
| **Global Cloud Resolving Model** (3.5 km) | Global Coverage  
CRM-Based Physics | Computational Cost  
Data Management/Analyses |

### MMF: Multi-scale Modeling framework

**Computational Cost of MMF:**

10^3 compared to 2.5° x 2.5° GCM  
10^1 compared to 0.25° x 0.25° GCM  
Same as 0.125° x 0.125° of GCM

Nesting: Cumulus parameterization is still needed
Microphysics in Multi-Scale Modeling System with Unified Physics

W.-K. Tao
Goddard Mesoscale Dynamic & Modeling Group
NASA Precipitation Measuring Mission (PMM), NASA Modeling Analyses Prediction (MAP), NASA Energy Water cycleS (NEWS), AIST

http://portal.nccs.nasa.gov/cloudlibrary/index2.html

Multi-Scale Modeling System with Unified Physics

Improvements and the Performances of the Multi-Scale Modeling System (CRM/microphysics – WRF/Typhoon case)?

Current & future Applications and Improvements (Global Modeling)
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) the Goddard Cumulus Ensemble model (GCE), a cloud-resolving model (CRM), (2) the NASA unified Weather Research and Forecasting Model (WRF), a region-scale model, and (3) the coupled fvGCM-GCE, the GCE coupled to a general circulation model (or GCM known as the Goddard Multi-scale Modeling Framework or MMF). The same cloud microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data. The left figure shows the multi-scale modeling system with unified physics. The GCE and WRF share the same microphysical and radiative transfer processes (including the cloud-interaction) and land information system (LIS). The same GCE physics will also be utilized in the Goddard MMF.

The idea to have a multi-scale modeling system with unified physics is to be able to propagate improvements made to a physical process in one component into other components smoothly and efficiently.

Left panel shows the WRF (1.67 km) Typhoon Katrina (2005) simulation. Right panel shows the MMF simulated and TRMM observed rainfall.

Goddard Multi-scale Modeling System with Unified Physics

MMF: Multi-Scale Modeling Framework
LIS: Land Information System
GCE: Goddard Cumulus Ensemble Model
WRF: Weather Research Forecast

Schematic diagram showing the interactions between microphysics with other Earth System Science

Tao, W.-K., and M.Moncrieff, 2009; Multi-scale cloud system resolving modeling, Reviews of Geophysics.
One-Moment (Warm Rain only, 2ICE, 3ICE-graupel, 3ICE-hail) (Tao and Simpson 1993, Tao et al. 2003, Lang et al. 2007)

One-moment 3ICE-graupel but improved - reducing 40 dBz aloft (Lang et al. 2011 – in press, Tao et al. 2011)

One-moment 3ICE-graupel - Temperature Dependent Drop Size Distribution (TeDD) (Matsui et al. 2009; Zeng et al. 2011)

One-moment - 4ICE (cloud ice, snow, graupel and hail)

Two-moment - 2-liquid, 3ICE-graupel (based on spectral bin microphysics – could add more moments for chemistry, testing now) 30% more expensive than one-moment bulk scheme

Spectral bin microphysics (Tao et al. 2007; Li et al., 2009; Iguchi et al. 2011) 16 times or 1600% more expensive; 256 CPUs
Improving Bulk Microphysics in GCE Using Bin Spectral Scheme (Li, Tao et al., JAS, 2009)

Bin Scheme is used to correct the overestimation of rain evaporation in bulk scheme and the density and fall speed of graupel in bulk scheme.

By assuming exp. rain DSD, bulk scheme artificially increases #s of small drops.
**LBA (GCSS)**

Improved

250 m resolution

Observed

Lang et al. 2011

Reducing over-estimated 40 dBZ aloft
Reduce the graupel, but increase both cloud ice and snow. Reduce the rainfall due to less melting by smaller graupel. (Not true for CRM simulation with fixed large-scale advective forcing.)
Lang et al. (2011)
The improved microphysics scheme can not only show better performance for simulating a short life of S. American line convection, but it also has performance for simulating clouds/cloud systems occurred in KWAJEX and TWP-ICE.

Question: Can the improved microphysics scheme also have better rainfall forecast for a Typhoon case using a different model?
NASA Unified (nu) WRF

Blue Boxes:
NASA Physical Packages

Short-term integration
US weather prediction
Continental MCSs
Hurricanes
Air Pollution

Long-term integration
US summer climatology
(North American Monsoon, drought, diurnal cycle, Aerosol Impact)

Land Information System (LIS)
Land Surface Model

Initial Condition from GEOS5 for NASA Field Campaigns

Cloud-Mesoscale Dynamics (Circulation)
Thermodynamic (Stability)
Rain Fall Assimilation

Cloud/Aerosol Direct Effect
Cloud Optical Properties
Aerosol Indirect Effect

Goddard Radiative Transfer Packages
Goddard Microphysical Packages

GOCART
WRF-Chem

Precipitation Radiation
Sfc Fluxes

Urban Heat Island Effect

Short-term integration
US weather prediction
Continental MCSs
Hurricanes
Air Pollution

Long-term integration
US summer climatology
(North American Monsoon, drought, diurnal cycle, Aerosol Impact)
Typhoon Morakot (2009)

Shiao-Lin Village in the mountain area of Southern Taiwan. Almost 600 people (most of the population of the village) were buried by the mudslide
391x322, 475x427, and 538x439
18, 6 and 2 km

61 vertical layers

Initial condition: NCEP GFS 1\textsuperscript{0} global analysis

72 h integration starting at 00Z August 7 - 00Z August 10 2009

Physics:

- Cu parameterization: Grell-Devenyi scheme (for the outer grid only)
- Cloud microphysics:
  - Goddard microphysics 3ice-Graupel
  - Improved 3-ice Graupel
- Radiation:
  - Shortwave: New Goddard
  - Longwave: New Goddard
- PBL parameterization:
  - YSU scheme
- Surface Layer: Monin-Obukhov (Janic)
- Land Surface Model: Noah land-surface

Red: Not in NCAR WRF 3.1.1 Yet, but in NASA Unified WRF

Tao et al. 2011
00Z August 7 - 00Z August 10 2009

Track

MSLP

CWB Operational
Max 1868 mm

Observed
Max 2705 mm
~400 rain gauge stations

09060700 UTC initial
TOTAL RAINFALL(mm) 72 HOURS FORECAST
Microphysics and PBL experiments - 72h accumulated rainfall

- **Warm rain**
  - Improved

- **Observed**
  - MYJ PBL
COMDBZ

Typhoon Morakot (2009) -> 72 s loop

Hurricane Katrina (200) 18 s loop

Tracer/Trajectory Analysis
1) Tropical waves move off the coast of Africa and propagate westward. It is known that tropical cyclogenesis can be initialized (or triggered) by these tropical waves. Therefore, accurate simulations of their interactions with small-scale convection are important for improving the simulations of TC genesis.
2) The eastward-traveling system in the southern hemisphere (SH) are the so-called the polar vortex, which is most powerful in the hemisphere's winter (JJAS, in the SH).
3) The equatorial Amazon has abundant rain between November and May. During the Brazilian spring season (October/November/December), most of the countries get wetter, except for the Brazilian northeast.
4) In comparison, during this period (winter in the northern hemisphere), mid-latitude periodic frontal systems move eastward across the USA.
5) Near the end of simulations, heavy precipitations appear near the ITCZ.
Surface Precipitation

TeDD reduced precipitation biases in tropical warm pool.

Toshi, Chern
Precipitation (Jan)

SJ Lin’s dynamics core
GCE microphysics
SAS
Turbulence closure
Stretched grid (6~55km)
vertical Level (40)

TRMM

Convective precipitation (SAS)

Microphysics precipitation

Total precipitation (SAS + MP)
Goddard Satellite Data Simulation Unit (SDSU) for evaluating models’ performance and supporting NASA’s satellite missions

Examine an evaluation method for Goddard multi-scale modeling system by using direct measurements from space-born, airborne, and ground-based remote sensing.

Support the NASA’s satellite mission (e.g., A-Train, GPM and ACE) through providing the virtual satellite measurements as well as simulated geophysical parameters to satellite algorithm developers.

IMPROVE BIN MICROPHYSICAL SCHEME USING TRMM DATA

C-band surface radar

TRMM PR

TRMM TMI 85GHz

Squall lines in central US

Li et al., 2010: Improving a spectral bin microphysical scheme using TRMM satellite observations. Quart. J of Royal Meteo. Soc.
Coupled the MMF and Satellite Simulator as a New Approach for Using NASA Satellite Data

The MMF can explicitly simulate cloud processes and cloud properties at the natural space and time scales of cloud systems. When the MMF coupled with the Goddard Satellite Data Simulation Unit (SDSU), the radiances and radar reflectivities/attenuation, can be directly extracted from the cloud-resolving model (CRM)-based physics embedded within the MMF and compared against NASA high-resolution satellite measurements. This approach could be a new pathway for using NASA satellite data to improve our knowledge of the cloud physical processes and leads to new improvements in cloud microphysical schemes.

The MMF requires a substantial amount of computing time (about 200-500 times of the traditional GCMs). Future works of MMF development will include long-term climate simulations with much higher resolutions in both the GCM and the CRM as well as more detailed microphysical schemes and coupling with land/ocean processes. The unprecedented spatial resolution, complexities in model physics and coupling with land/ocean models will continually push the envelope of the requirement of computing resources. It is expected to require at least 10 million CPU hours on thousands of processors and 100 TB of disk space for our future research.

Contoured Frequency Altitude Diagrams (CFADs) of PR reflectivity (top panels) from MMF simulations (left) and TRMM (right) in the summer 2007 provide a useful statistical description that illustrates the effects of precipitation microphysics at different altitudes. The predicted and observed PR reflectivity at different latitude bands (lower panels) reveals that fvMMF over-predicted the PR reflectivity and did not produced the observed land-ocean contrast. These results provide better direction to improve the model cloud physics.
Goddard MMF Hindcast Experiments of MJO cases during YOTC

<table>
<thead>
<tr>
<th>Cases</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>5/20/2008-6/20/2008</td>
</tr>
<tr>
<td>Case 2</td>
<td>01/15/2009-02/15/2009</td>
</tr>
<tr>
<td>Case 3</td>
<td>04/01/2009-05/01/2009</td>
</tr>
<tr>
<td>Case 4</td>
<td>11/01/2009-12/01/2009</td>
</tr>
<tr>
<td>Case 5</td>
<td>11/10/2009-12/10/2009</td>
</tr>
<tr>
<td>Case 6</td>
<td>12/15/2009-01/15/2010</td>
</tr>
</tbody>
</table>

Observed MJO Phase plots

Case 1
MJO Phase: 15S-15N: 20060520-20080620
Phase 7 (Western Pacific) Phase 6

Case 2
MJO Phase: 15S-15N: 20090115-20090215
Phase 7 (Western Pacific) Phase 6

Case 3
MJO Phase: 15S-15N: 20090401-20090501
Phase 7 (Western Pacific) Phase 6

Case 4
MJO Phase: 15S-15N: 20091101-20091201
Phase 7 (Western Pacific) Phase 6

Case 5
MJO Phase: 15S-15N: 20091110-20091210
Phase 7 (Western Pacific) Phase 6

Case 6
MJO Phase: 15S-15N: 20091215-20100115
Phase 7 (Western Pacific) Phase 6
Schematics of the bulk microphysical processes in the typical two water and three-class ice scheme. Boxes represent the bulk classes of water and aerosol particles, and the arrows represent conversion pathways with plus and minus signs indicating direction of the named conversion process. In addition to prediction the mass of cloud water species (cloud drops, rain, cloud ice, snow and graupel), the number of concentration of cloud water species is also predicted.
Goddard Mesoscale Dynamics and Modeling Group

http://portal.nccs.nasa.gov/cloudlibrary/index2.html
Terminal Velocity of Precipitating particles aloft

\[ V(d) = V_0(d) \left[ \frac{\text{AirDensity}_o}{\text{AirDensity}} \right]^{0.4} \]

Referent state of \( \text{AirDensity}_o \): Two different assumptions

A constant air density at 1013 mb and at 20 \( ^\circ \)C (based on Foote and Du Toit, 1969) - In Lin, WSM6 and others (WRF)? 2856 / 3345 mm

Air density at model surface (varies with time and location) - In GCE and other CRMs - 2529 / 2893 mm