Clouds Associated with the MJO: A New Perspective from CloudSat

Emily M. Riley and Brian E. Mapes
RSMAS, University of Miami
eriley@rsmas.miami.edu

1. Introduction

The Madden Julian Oscillation (MJO) is the dominant mode of intraseasonal variability of convection and circulation in the tropics. Past studies have characterized the thermodynamics, dynamics, and precipitation characteristics of the MJO (e.g., Lin and Johnson 1996, Kiladis et al. 2005, Benedict and Randall 2007, Morita et al. 2006). Schematics from the above studies generally show a progression of cloud types from shallow, middle-topped, to deep clouds, followed by high-topped somewhat thick clouds, with an eventual return to shallow clouds.

In this study we use direct observations from two years (June 2006 - June 2008) of CloudSat data to characterize clouds associated with various phases of the MJO.

2. Data and Methods

- Use version 5 of 2B-GEOPROF CloudSat product
- Echo Object (EO) – contiguous region of radar dBZ
- Seven EO types are defined by top and base height (Fig. 1).

Two methods are used to define MJO phases:

(1) Pinwheel Phases:
- MJO filtered OLR (k=[0-9] & 30-96d) avg +Δ15$^\circ$
- Standardize filtered OLR and its local d/dt
- Define 8 phases in scatter plot (Fig. 2a)
- Phase 0 = suppressed; Phase 4 = active
- Use EOs where amplitude > 2

(2) Wheeler & Hendon (2004) RMM Phases:
- Phase is only a function of time
- Each diamond is a day in CloudSat data era
- Colored diamonds have (RMM12 + RMM22) > 1

3. Results: Pinwheel Phases

Actual and normalized area by phase:
- Red = narrow Dp < 200 km
- Orange = wide Dp > 200 km
- Twice as much cover in active vs. suppressed
- Narrow (wide) Dp greatest in suppressed (active) phases
- An greatest after active phases
- Sc and Cu greatest during suppressed phases

Mosaic of actual clouds across the MJO:
- Random samples of EOs
- Wide Dp only appear in active phases
- Narrow Dp appear in all phases
- Anvil lags deep convection
- Cf. Morita et al. (2006)

4. Results: WH04 RMM Phases

Anomalous echo cover by type:
- Anomalies relative to all phase mean
- Magenta line = approx. slope of wide Dp propagating anomalies
- Wide Dp, An, and Ac have two bands of eastward propagating positive anomalies (Fig. 6a, c, f)
- Narrow Dp and Cu have zonal anomaly oscillations (Fig. 6b, h)
- Ci has 1 eastward propagating band of positive anomalies (Fig. 6d)
- Cg leads and An lags wide Dp signal (Fig. 6e, 6c)
- Mainly see propagation of wide Dp, narrow Dp, and An types
- Two envelopes of convection
- Strong Western Hemi. signal
- Cf. Madden & Julian (1972)

5. Summary

Pinwheel Phases: A doubling of echo cover occurs from suppressed to active phases. The normalized bar graphs suggest that suppressed MJO phases favor shallow clouds and narrow deep convection, while active phases favor wide deep convection. Additionally, anvil is more common after active phases.

WH04 RMM Phases: The wide Dp, An, and Ac EO types have two bands of eastward propagating anomalies, while Ci has only one, and narrow Dp, and Cu have a zonal anomaly structure.

References:

Acknowledgments: This work was performed for the intercomparison laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration and supported by the National Science Foundation under grant no. 0860522.