Role of Land Processes in the Boreal Summer Intraseasonal Variability

Xubin Zeng
June 2010

University of Arizona,
Tucson, AZ, USA
xubin@atmo.arizona.edu
Outline:

1. Does land matter in weather and climate?
2. Current land models and measurement technology
3. Role of land processes in boreal summer intraseasonal variability
4. Land versus ocean interactions with atmosphere
5. Suggestions for future land-related research

Ocean skin temperature prognostic scheme (Zeng and Beljaars 2005) implemented in ECMWF and WRF

Bulk algorithm for computing ocean surface fluxes (Zeng et al. 1998) implemented in NCEP
1. Does land surface matter in climate?

<table>
<thead>
<tr>
<th>Decade</th>
<th>Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950’s</td>
<td>No</td>
</tr>
<tr>
<td>1960’s-1970’s</td>
<td>Not really</td>
</tr>
<tr>
<td>1980’s-1990’s</td>
<td>Yes (ISLSCP, GEWEX, BAHC)</td>
</tr>
<tr>
<td>2000’s</td>
<td>Even more important (Water, Carbon)</td>
</tr>
</tbody>
</table>

Does land surface matter in weather forecasting? (taking the evolution of ECMWF land model)

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Bucket model (no vegetation)</td>
</tr>
<tr>
<td>1994</td>
<td>2 soil layers, vegetation stomatal resistance</td>
</tr>
<tr>
<td>1999</td>
<td>4 soil layers, 1 vegetation layer with LAI = 3,</td>
</tr>
<tr>
<td></td>
<td>no separate snow layer</td>
</tr>
<tr>
<td>2000’s</td>
<td>4 soil layers, 1 snow layer, variable LAI, 8 tiles</td>
</tr>
</tbody>
</table>
Overall Assessment of Influence

<table>
<thead>
<tr>
<th>Land-Surface Influence</th>
<th>Plausible Physical Basis</th>
<th>Climate Record Evidence</th>
<th>Model Evidence</th>
<th>Further Evidence (Model, Obs., or Expt.)</th>
<th>Credibility (* see below)</th>
<th>Quantification (Good, Medium, Poor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of existing land-surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of topography</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ext. Likely</td>
<td>Medium/Low</td>
</tr>
<tr>
<td>Contribution to atmos. water</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ext. Likely</td>
<td>Medium</td>
</tr>
<tr>
<td>Influence of transient changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of soil moisture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Poor</td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meso-scale</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Poor</td>
</tr>
<tr>
<td>Effect of vegetation vigour</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Poor</td>
</tr>
<tr>
<td>Effect of frozen precipitation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Poor</td>
</tr>
<tr>
<td>Influence of change in land cover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect on 2 m climate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ext. Likely</td>
<td>Good</td>
</tr>
<tr>
<td>Effect of regional-scale changes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Medium</td>
</tr>
<tr>
<td>Effect of imposed heterogeneity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very Likely</td>
<td>Medium</td>
</tr>
</tbody>
</table>

But can these be totally separated?

Quantification (Good, Medium, Poor):
- **Good**
- **Medium**
- **Poor**

Credibility (* see below):
- **Extremely likely** > 95%
- **Very likely** > 90%
- **Likely** > 66%
- **More likely than not** > 50%
- **Unlikely** < 33%
- **Very Unlikely** < 10%
- **Extremely unlikely** < 5%

Shuttleworth (2010)
Land processes are obviously crucial to societal needs

From UNEP
2. Current land models and measurement technology

Noah used in NCEP, WRF
CLM4 used in CCSM
Difficulties in land modeling

PILPS, GSWP (Dirmeyer et al. 1999)
COsmic-ray Soil Moisture Observing System (COSMOS)

To install 50 COSMOS probes over the U.S. ($5.5M/4yr from NSF)
COSMOS Project Plans in the Next 4 Years

24 Probable/Possible Sites for COSMOS Deployments During 2010
Looking to the Future

Large Scale COSMOS Deployments at up to 500 Sites
3. Role of land processes in boreal summer intraseasonal variability

a. MJO (eastern propagation)

Maritime Continent as a MJO prediction barrier

“During periods when the actively convective phase of the MJO is over the Indian Ocean and enters the Maritime Continent, i.e., at the beginning of July and August (Fig. 6) there is no improvement in skill (against the persistence forecast).” (Vintzileos and Pan 2009)
Mori et al. (2004)
Fig. 2. Annual mean precipitation error (mm/day) from four UM AMIP II experiments with different horizontal resolution: (a) climate resolution (2.58 * 3.758). (Neale and Slingo 2003)

The pattern of the errors in the tropical precipitation persists and, if anything, is enhanced with increasing resolution.
Diurnal cycle of the precipitation intensity anomaly averaged over 15°S–15°N. (Sato et al. 2009)
b. Intraseasonal monsoon variability (northward propagation)

Webster (1983) based on 2-D model: existence of northward propagation depends on interactive land hydrology

Ferranti et al. (1999) based on ECMWF model: spatial characteristics and northward propagation are primarily caused by internal atmospheric dynamics, but the temporal characteristics depends on interactive land
Ferranti et al. (1999)
c. Tropical and subtropical land-sea-atmosphere coupling:

Self-sustaining oscillation without weather, diurnal cycle, or annual cycle (Abbot and Emanuel 2007)
d. Land effect on weather prediction and climate simulation

Difference in monthly forecast precip in July 1993 starting with wet and dry soils (Beljaars et al. 1996)
4. Land versus ocean interactions with atmosphere

\[R_{\text{net}} = SW_{\text{net}} + LW_{\text{net}} = SH + LH + Fs,n \]

L:
- a) SW absorbed in a thin soil layer (~1 mm);
- b) \(Fs,n = 0 \) for \(T > \) days;
 - Ts is a response variable with large diurnal cycle;
- d) both Ts and SM are important state variables;
- e) SH and LH partitioning is controlled by SM

O:
- a) SW absorbed in a thick ocean layer (~50 m);
- b) \(Fs,n \neq 0 \) for \(T > \) days;
 - SST is a forcing variable;
- d) SST is the primary state variable;
- e) LH >> SH
SWnet = SWd - SWu = (1 - \(\alpha_s\))(1 - \(\alpha_c\)) SWd(clear)

- surface albedo: \(\alpha_s = \frac{SWu}{SWd}\)

- effective cloud albedo
 \(SWCF = SWd - SWd(\text{clear})\)
 \(\alpha_c = -\frac{SWCF}{SWd(\text{clear})}\) (Betts 2009)

Therefore, SWnet is strongly affected by clouds (cloud + → SWnet --)

LWnet is strongly affected by clouds and water vapor (cloud + or water vapor + → LWnet – in magnitude)
Evaporative fraction: \(EF = \frac{LH}{LH+SH} \), Betts (2009)
L-A coupling:

\[
\begin{align*}
\text{SM} + & \rightarrow \text{LH} + \\
& \rightarrow \text{Precip} + \\
\text{SM} + & \rightarrow \text{SH} -- \\
& \rightarrow \text{T} -- \\
& \rightarrow \text{buoy} -- \\
& \rightarrow \text{Pre} --
\end{align*}
\]

Betts (2009)
Land-atmosphere coupling

Albedo + \rightarrow \text{precip} -- \quad \text{(Charney hypothesis)}

\begin{align*}
\text{Veg cover} -- & \quad \rightarrow \text{Zo} -- \\
& \quad \rightarrow \text{low level convergence change} \\
& \quad \rightarrow \text{precip change}
\end{align*}

\begin{align*}
\text{Veg cover} -- & \quad \rightarrow \text{dust} + \\
& \quad \rightarrow \text{CCN} + \\
& \quad \rightarrow \text{clouds and precip change}
\end{align*}

\begin{align*}
\text{Veg cover} -- & \quad \rightarrow \text{Albedo} + \quad \rightarrow \text{precip} --
\end{align*}
5. Suggestions for future land-related research

a. For MJO
 • Idealized tests on the Maritime Continent impact -- replacing the Maritime Continent by oceans
 • Resolve the Maritime Continent by using global or regional models with grid spacing of 5-10 km.

b. For monsoon-related intraseasonal variability
 • AGCM with multiple land models
 • Run GCM with fixed soil moisture from one simulation and with interactive land processes (GLACE design)

Terra-planet experiment (versus aqua-planet)
c. Land-related analyses

• Averaged diurnal cycle of surface variables over different phases of intraseasonal variability

• Quantify the land-atmosphere coupling strength of different models at intraseasonal scale by computing the Γ index:

$$\sum P'P' = \sum P'E' + \sum P'C'; \quad C = F_{\text{in}} - F_{\text{out}} - dW/dt + \alpha$$

$$\Gamma = \frac{\sum P'E'}{\sum P'P'} \quad E', P' \text{ are deviations from climatology}$$

[Motivation: Zeng et al. (2010) analyzing global and regional reanalyses, offline model output, regional and global modeling output as well as 2*CO2 modeling output]