Policy implications of carbon cycle uncertainties

ASP Colloquium Lecture
NCAR, Boulder – CO
14 August 2013 – Joeri Rogelj
Policy implications of carbon cycle uncertainties

ASP Colloquium Lecture
NCAR, Boulder – CO
14 August 2013 – Joeri Rogelj

Acknowledgments
Malte Meinshausen, Keywan Riahi, Reto Knutti, Andy Reisinger, David McCollum, Brian O’Neill and many others…
Outline

- Policy arena
- Incorporating carbon cycle uncertainties
- A few examples related to climate change
Outline

- Policy arena
- Incorporating carbon cycle uncertainties
- A few examples related to climate change
Outline

- Policy arena
- Incorporating carbon cycle uncertainties
- A few examples related to climate change
The policy arena

Where do carbon cycle and policies interact?
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle
The policy arena

Where do carbon cycle and policies interact?
- Policies -> carbon-cycle

Images courtesy of: medomed.org, Ashworth Community, REVE, WWF
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle

Images courtesy of: medomend.org, Ashworth Community, REVE, WWF
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle

Images courtesy of: medomed.org, Ashworth Community, REVE, WWF
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle
- Carbon-cycle -> policies

Images courtesy of: medommed.org, Ashworth Community, REVE, WWF
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle

- Carbon-cycle -> policies

Images courtesy of: medomed.org, Ashworth Community, REVE, WWF
The policy arena

Where do carbon cycle and policies interact?

- Policies -> carbon-cycle

- Carbon-cycle -> policies

Images courtesy of: medommed.org, Ashworth Community, REVE, WWF
The policy arena

What are the policy forums?
The policy arena

What are the policy forums?

- Local and regional level:
 - National and regional governments
 - Communities
The policy arena

What are the policy forums?
- Local and regional level:
 - National and regional governments
 - Communities
- Global:
 - UNFCCC
 - G20
 - UNCCD
Incorporating carbon cycle uncertainties
Assessment framework
Assessment framework

- Emission scenario
- Economy
- Energy system
- Societal preferences
- Demographics
- Politics

Image: Rogelj Joeri (2013)
Assessment framework

Emission scenario
- economy
- energy system
- societal preferences
- demographics
- politics

Climate forcing
- carbon cycle
- GHG concentrations
- direct/indirect
- radiative forcing

Image: Rogelj Joeri (2013)
Assessment framework

- **Emission scenario**
 - economy
 - energy system
 - societal preferences
 - demographics
 - politics

- **Climate forcing**
 - carbon cycle
 - GHG concentrations
 - direct/indirect radiative forcing

- **Geophysical impacts**
 - temperature
 - extreme events
 - hydrological cycle
 - acidification
 - Long-term geophysical impacts
 - sea-level rise
 - land-cover changes
Assessment framework

- **Emission scenario**
 - economy
 - energy system
 - societal preferences
 - demographics
 - politics

- **Climate forcing**
 - carbon cycle
 - GHG concentrations
 - direct/indirect radiative forcing

- **Geophysical impacts**
 - temperature
 - hydrological cycle
 - acidification
 - extreme events
 - Long-term geophysical impacts
 - sea-level rise
 - land-cover changes

- **Societal impacts**
 - food
 - health
 - economic losses
 - ecosystem services
 - livelihoods

Image: Rogelj Joeri (2013)
Assessment framework

- Emission scenario
 - economy
 - energy system
 - societal preferences
 - demographics
 - politics

- Climate forcing
 - carbon cycle
 - GHG concentrations
 - direct/indirect radiative forcing

- Geophysical impacts
 - temperature
 - hydrological cycle
 - acidification
 - extreme events
 - Long-term geophysical impacts
 - sea-level rise
 - land-cover changes

- Societal impacts
 - food
 - health
 - water
 - economic losses
 - ecosystem services
 - livelihoods

loss & damage

Image: Rogelj Joeri (2013)
Assessment framework

Emission scenario
- economy
- energy system
- societal preferences
- demographics
- politics

Climate forcing
- carbon cycle
- GHG concentrations
- direct/indirect radiative forcing

Geophysical impacts
- temperature
- hydrological cycle
- acidification
- extreme events
- Long-term geophysical impacts
- sea-level rise
- land-cover changes

Societal impacts
- food
- health
- water
- economic losses
- ecosystem services
- livelihoods

Policies
- ASSESS “DANGEROUS INTERFERENCE”

Level of mitigation

Loss & damage

Level of adaptation

Preferences

Example: How are carbon-cycle uncertainties incorporated in IAMs?

OBJECTIVE:
Representing IPCC AR4 uncertainty with a reduced-complexity model setup

- Uncertainty in:
 - carbon cycle
 - climate response
 - historical forcing and observations
Example: MAGICC

- Reduced complexity carbon-cycle and climate model
- Developers:
 - Tom Wigley
 - Sarah Raper
 - Malte Meinshausen
- Documentation
 - Meinshausen et al, ACP (2011)
 - www.magicc.org
MAGICC: carbon cycle

- Terrestrial and ocean carbon cycle
- Carbon-cycle climate interactions
MAGICC: carbon cycle

Terrestrial carbon cycle

Figure: Meinshausen et al (2011)

www.magicc.org – live.magicc.org
MAGICC: carbon cycle

- Terrestrial and ocean carbon cycle
- Carbon-cycle climate interactions

Figure C^4MIP tuning: Meinshausen et al (2011)
MAGICC: climate response

- Four-box energy-balance model
- Upwelling diffusion ocean model

Figure: Meinshausen et al (2011)
MAGICC: climate response

- Four-box energy-balance model
- Upwelling diffusion ocean model

Probabilistic approach (Bayesian)
- 82-dimensional joint-distribution of climate and forcing parameters
- Applying historical constraints:
 - 2005 AR4 uncertainty distributions for RF
 - Observed hemispheric land/ocean temperatures
 - Observed ocean heat uptake

Meinshausen et al (2009)
MAGICC: IPCC AR4 consistent setup

- C4MIP carbon-cycle emulation
- Probabilistic AR4 forcing & historic constraints

www.magicc.org – live.magicc.org
MAGICC: IPCC AR4 consistent setup

- C4MIP carbon-cycle emulation
- Probabilistic AR4 forcing & historic constraints
- AR4 climate sensitivity?
MAGICC: IPCC AR4 consistent setup

- C^4MIP carbon-cycle emulation
- Probabilistic AR4 forcing & historic constraints
- AR4 climate sensitivity?

IPCC AR4 climate sensitivity:
- likely to be in the range of 2 to 4.5°C
- with a best estimate of about 3°C, and is
- very unlikely to be less than 1.5°C.
- Values substantially higher than 4.5°C cannot be excluded
MAGICC: IPCC AR4 consistent setup

- C^4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity?

Figure based on: Rogelj et al (2012)
MAGICC: IPCC AR4 consistent setup

- C^4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity?

Figure based on: Rogelj et al (2012)
MAGICC: IPCC AR4 consistent setup

- C^4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity?

Figure based on: Rogelj et al (2012)
MAGICC: IPCC AR4 consistent setup

- C4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity?

Figure based on: Rogelj et al (2012)
MAGICC: IPCC AR4 consistent setup

- C4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity?

Figure based on: Rogelj et al (2012)
MAGICC: climate response

Figure: Meinshausen et al (2009)
MAGICC: IPCC AR4 consistent setup

- C4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity

Figure based on: Rogelj et al (2012)
MAGICC: IPCC AR4 consistent setup

- C⁴MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity

Figure based on: Rogelj et al (2012)

www.magicc.org – live.magicc.org
MAGICC: IPCC AR4 consistent setup

- C^4MIP carbon-cycle emulation
- Probabilistic AR4 forcing
- AR4 climate sensitivity

Figure based on: Rogelj et al (2012)
Policy implications of carbon cycle uncertainties

Three illustrative examples
Policy implications of carbon cycle uncertainties

Three illustrative examples

- General characteristics of low temperature scenarios
Policy implications of carbon cycle uncertainties

Three illustrative examples

- General characteristics of low temperature scenarios
- Near-term implications of long-term emission constraints
Policy implications of carbon cycle uncertainties

Three illustrative examples

- General characteristics of low temperature scenarios
- Near-term implications of long-term emission constraints
- Integrating uncertainties for scenarios towards staying below 2°C
Examples: framing
Examples: framing

![Time series graph showing temperature rise relative to preindustrial levels.](Historical temperatures: HadCRUT4, Figure: Rogelj J.)
Examples: framing

Historical temperatures: HadCRUT4, Figure: Rogelj J.
General characteristics
General characteristics
General characteristics
General characteristics

Likely (>66%) maximum temperature rise (T) before 2100

$T_{66\%} < 2^\circ C$

median

Figure based on: Rogelj et al (2011)
General characteristics

Likely (>66%) maximum temperature rise (T) before 2100

Figure based on: Rogelj et al (2011)
General characteristics

Figure based on: Rogelj et al (2011)
General characteristics

![Graph showing likely (>66%) maximum temperature rise (T) before 2100. The graph illustrates the total annual GHG emissions in GtCO₂e/yr from 2000 to 2100. The horizontal axis represents the years, and the vertical axis shows the total annual GHG emissions. The graph includes two key scenarios: T₆₆% < 2°C and T₆₆% < 3 to 4°C. The median line and two other lines indicate the range of emissions.](image)

Figure based on: Rogelj et al (2011)
General characteristics

Figure based on: Rogelj et al (2011)
General characteristics

Figure based on: Rogelj et al (2011)
General characteristics

![Graph showing likely (>66%) maximum temperature rise (T) before 2100]

- \(T_{66\%} < 2^\circ C \)
- Median

Total annual GHG emission (GtCO\(_2\)e/yr)
- 44 GtCO\(_2\)e/yr
- 20 GtCO\(_2\)e/yr

Years
- 2000 to 2100

Figure based on: Rogelj et al (2011)
Policy implications of carbon cycle uncertainties

Three illustrative examples

- General characteristics of low temperature scenarios
- Near-term implications of long-term emission constraints
- Integrating uncertainties for scenarios towards staying below 2°C
Tools
Tools: societal representation

GREENHOUSE GAS EMISSIONS SCENARIOS
Tools: societal representation
Tools: societal representation

- Light bulb
- Wind turbine
- Industrial plant
- Car

\[\text{CH}_4 \quad \ldots \quad \text{CO}_2 \quad \text{SO}_x \quad \text{HFCs} \quad \text{BC/OC} \]
Tools

MESSAGE

MAGICC
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
“Feasibility window” in 2020

Figure based on: Rogelj et al (2013)
Policy implications of carbon cycle uncertainties

Three illustrative examples

- General characteristics of low temperature scenarios
- Near-term implications of long-term emission constraints
- Integrating uncertainties for scenarios towards staying below 2ºC
Integrating uncertainties
Integrating uncertainties
Integrating uncertainties
Integrating uncertainties
Integrating uncertainties
Tools

MESSAGE

MAGICC
Methodology
Methodology

Figure based on: Rogelj et al (2013)
Methodology – cost-risk distributions

Figure based on: Rogelj et al (2013)
Cost-risk distributions

Figure based on: Rogelj et al (2013)
Cost-risk distributions

Probability to stay below 2°C

2012 Carbon Price [US$2005/tCO₂]

Reduced climate risks

Figure based on: Rogelj et al (2013)
Cost-risk distributions

Figure based on: Rogelj et al (2013)
Cost-risk distributions

![Graph showing the probability to stay below 2°C as a function of the 2012 carbon price. The probability increases as the carbon price increases.]

Figure based on: Rogelj et al (2013)
Cost-risk distributions

Figure based on: Rogelj et al (2013)
Technological uncertainties

2°C

Figure based on: Rogelj et al (2013)
Technological uncertainties

Figure based on: Rogelj et al (2013)
Societal choices (energy demand)

Figure based on: Rogelj et al (2013)
Societal choices (energy demand)

Figure based on: Rogelj et al (2013)
Societal choices (energy demand)

2°C

Figure based on: Rogelj et al (2013)
Political choices

2°C

Figure based on: Rogelj et al (2013)
Political choices

Policy implications of carbon cycle uncertainties

Figure based on: Rogelj et al (2013)
Which uncertainties matter (most)?

2°C
Which uncertainties matter (most)?

2°C

1.
2.
3. Societal (energy demand)
4. Technological
Which uncertainties matter (most)?

2°C

1. Political (delayed action)
2. Geophysical
3. Societal (energy demand)
4. Technological
Which uncertainties matter (most)?

1. Political (delayed action)
2. Geophysical
3. Societal (energy demand)
4. Technological
Policy implications of carbon cycle uncertainties
References
UNEP (2011, 2012)
Riahi et al. (Global Energy Assessment, 2012)
Meinshausen et al. (Nature, 2009)
Meinshausen et al. (ACP, 2011a, b)
Rogelj et al. (Nature Climate Change, 2011, 2012, 2013)
Rogelj et al. (Nature, 2013)

More information on:
http://www.iac.ethz.ch/people/rogeljj

Thank you
Back-up

Figure: Rogelj et al (2013)
Back-up

Figure: Rogelj et al. (2013)

Policy implications of carbon cycle uncertainties

joeri.rogelj@env.ethz.ch
Figure: Rogelj et al (2013)

Back-up

Mitigation technology sensitivity

Energy demand sensitivity

3°C

Increasingly delayed action

Political inaction sensitivity

Combined representation

Legend

Panel a and b:
- Reference full technology portfolio
- Advanced long-term non-CO₂ mitigation
- Advanced transportation
- No new nuclear
- Limited land-based mitigation measures
- No CCS

Panel a, b, c and d color coding:
- Intermediate future energy demand
- Low future energy demand
- High future energy demand

Panel c and d:
- Immediate action
- Delayed action until 2015
- Delayed action until 2020
- Delayed action until 2025
- Delayed action until 2030

Policy implications of carbon cycle uncertainties

joeri.rogelj@env.ethz.ch
Back-up

Figure: Rogelj et al (2013)
Uncertainty ranking

Results

2°C

1. Political (delayed action)
2. Geophysical
3. Social (energy demand)
4. Technological

Note: demographic and economic uncertainties not explicitly assessed.

Figure: Rogelj et al (2013)
Uncertainty ranking

Results

2°C

1. Political (delayed action)
2. Geophysical
3. Social (energy demand)
4. Technological

Note: demographic and economic uncertainties not explicitly assessed.

Figure: Rogelj et al (2013)
Uncertainty ranking

Results

2°C

1. Political (delayed action)
2. Geophysical
3. Social (energy demand)
4. Technological

Note: demographic and economic uncertainties not explicitly assessed.

Figure: Rogelj et al (2013)
Figure: Rogelj et al (2012)
Back-up

Figure: Rogelj et al (2012)
feasibility windows of global 2020 greenhouse gas emissions required to limit warming to below 2°C