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ABSTRACT

An ensemble of simulations from different versions of the Community Atmosphere Model in the Com-

munity Earth System Model (CESM) is used to investigate the processes responsible for the intermodel

spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by

shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud

feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of

feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-

feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this

study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is

correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the

storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent

and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical

velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the

cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate

sensitivity spread within the CESM ensemble.

1. Introduction

Global climate change is often described with a simple

metric of the temperature response to a given radiative

forcing of the climate system, the climate sensitivity g.

The range of climate sensitivity to a doubling of carbon

dioxide (CO2) simulated by general circulation models

(GCMs) of 2.1–4.4 K has changed only slightly in 30

years (Charney 1979; Solomon et al. 2007), with a most

likely value of ;3 K (Meehl et al. 2007b), recently up-

dated to 3.3 K (Huber et al. 2011). Observations and

models have been used to help understand climate

feedbacks that determine the climate sensitivity, such as

water vapor (Soden et al. 2002; Gettelman and Fu 2008),

clouds (Dessler 2010), and albedo feedback (Flanner

et al. 2011).

Recent work has attempted to link climate sensitivity

to model parameters in large parameter perturbation

experiments (Piani et al. 2005; Sanderson et al. 2010),

multimodel ensembles (Rougier et al. 2009), or targeted

perturbations to a single model (Yoshimori et al. 2011;

Gettelman et al. 2012;Watanabe et al. 2012).Webb et al.

(2012) provide an extensive summary of recent experi-

ments. The spread in simulated climate sensitivity re-

sults largely from differences in cloud feedbacks (Bony

et al. 2006; Soden and Held 2006; Dufresne and Bony

2008), particularly the shortwave (SW) feedbacks due to

low clouds (Williams andWebb 2009; Soden and Vecchi

2011; Webb et al. 2012) in the subtropics. Zelinka et al.

(2012a) noted that there is also considerable spread in

high cloud feedbacks, but they contribute less to un-

certainty in net cloud feedback because of compensating

SW and longwave (LW) effects. Tsushima et al. (2006)

linked changes in climate sensitivity to changes in cloud

water and cloud ice content.

Several studies have also looked at the spatial distri-

bution of climate feedbacks. Colman (2002) examined

feedbacks spatially (but with fixed cloud optical prop-

erties). Ogura et al. (2008) found sensitivity in a single

GCM was altered by changes to ice microphysics in the
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Southern Hemisphere storm track. Soden and Vecchi

(2011) looked at the spatial distribution of feedbacks in

a multimodel ensemble, and Taylor et al. (2011a) de-

composed feedbacks spatially in a single GCM. Taylor

et al. (2011b) examined the seasonality of feedbacks.

This study uses experiments from an atmosphere–

ocean GCM to explore which feedbacks determine cli-

mate sensitivity andwhat processes affect these feedbacks

through different generations of a singleGCM ‘‘family.’’

This has the advantage of tight constraints on the system

and detailed diagnostics. The use of a single model with

perturbation experiments has the disadvantage of limited

structural uncertainty. We confirm that cloud feedbacks

are critical to the spread of climate sensitivity. We seek

to understand what regions and regimes are most im-

portant for this spread, and whether we can relate cloud

feedbacks and climate sensitivity to model state and

physical (cloud) processes.Method (section 2) andmodels

(section 3) are defined below. Results are in section 4.

The paper finishes with a discussion of physical mecha-

nisms (section 5) and conclusions (section 6).

2. Method

We will diagnose climate feedbacks and climate sen-

sitivity in a suite of GCM experiments, and then explore

how the variability is correlated with model states.

a. Sensitivity and feedbacks

We use the radiative kernel method (Soden and Held

2006) to estimate climate feedbacks. The method has

been shown to reproduce feedbacks calculated with

detailed partial radiative perturbation (PRP) calcula-

tions (Soden et al. 2008). The notation and method here

follow Gettelman et al. (2012).

Climate sensitivity g (K) is the change in global av-

erage surface temperature that results from an imposed

radiative forcing G (W m22):

g5G/l , (1)

where l is the feedback parameter (W m22 K21). If one

assumes a linear and independent interaction of feed-

backs, l is the sum of a series ofX feedbacks (l5�lX)

(Colman 2003; Soden et al. 2008). Each lX can be de-

composed into a radiative kernel (Soden et al. 2008)

›R/›X, where ›R is the change in top-of-atmosphere

(TOA) energy balanceR for a unit perturbation ›X, and

a climate response DX/DTas, where DX and DTas are the

difference in X and the near-surface temperature Tas

from a pair of simulations, one with imposed forcing G.

Radiative kernels are derived from Shell et al. (2008).

Sanderson and Shell (2012) have noted the dependence

of the kernel on model state, especially the surface al-

bedo kernel, and this effect is discussed further below.

The kernel method does not allow a direct estimate

of cloud feedbacks. Cloud feedbacks are calculated

by adjusting the cloud radiative effect (CRE) change

(DCRE) for changes in model state that affect TOA

fluxes. Since CRE 5 Rcld 2 Rclr (where subscripts cld

and clr indicate cloudy and clear skies, respectively),

changes to Rclr, from, for example, surface albedo or

water vapor changes, would affect CRE and cloud

feedback (lcld 5 DCRE/DTas). Kernel adjusted cloud

feedback (Soden et al. 2008; Shell et al. 2008), or ACF,

uses radiative kernels to correct DCRE for changes to

the model state (other feedbacks). Taylor et al. (2011a),

using the Community Climate System Model, version 3

(CCSM3), noted that the ACF yields global and re-

gional results that are similar to the PRP estimate of

cloud feedbacks. The correction is weakly dependent on

the Community AtmosphereModel, version 3 (CAM3),

cloud distribution and is only significant at high lati-

tudes, where CAM3 and CAM5 have different cloud

masking of the surface albedo kernel (Sanderson and

Shell 2012), but this fact does not alter the conclusions of

this paper because the area involved is small. Zelinka

et al. (2012a) have developed cloud-property kernels to

explore changes due to cloud amount and optical depth.

Necessary outputs were not available from these simu-

lations to use the cloud-property kernels, but ACF re-

sults derived from these experiments byGettelman et al.

(2012) compare well with those derived with the cloud-

property kernels of Zelinka et al. (2012b), and our

analysis does enable an understanding of cloud-fraction

changes.

To estimate the climate sensitivity g from runs that

are out of balance (DR 6¼ 0, which occurs with fixed sea

surface temperatures), we calculate an effective sensi-

tivity parameter geff (Gettelman et al. 2012). By using

the total change in forcing between two runs with dif-

ferent surface temperatures and CO2,

geff 5
GCO2

(GCO21DR)
DTas , (2)

whereGCO2 is the radiative forcing for doubling CO2 from

280 to 560 ppm by volume (ppmv). The radiative forcing

GCO2 is approximately 3.7 W m22 (Solomon et al. 2007)

but varies in each model by 10% (’0.2 W m22) because

of differences in state and radiation code (Kay et al.

2012b). We find GCO2 5 3.9 W m22 from estimating the

forcing from a fixed SST experiment with only CO2

doubled from 367 to 734 ppmv for CAM5 [following

the method of Hansen et al. (2002)]. In Eq. (2), DR (pos-

itive downward) is the TOA imbalance. For equilibrium
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simulations, DR 5 0 and geff 5 DTas. Gettelman et al.

(2012) have shown that geff ’ g.

Note that our analysis includes both the ‘‘fast re-

sponse’’ of the system to CO2 increases before the sur-

face temperature has time to adjust and the slow

response to the change in SST (Hansen et al. 2002). The

latter (slow response) is usually taken to be ‘‘feedback,’’

and the former is included in the ‘‘forcing’’ (Gregory

and Webb 2008). We have performed separate calcula-

tions with SST changes only (feedback or slow response)

to verify that, for cloud feedbacks, almost all of the re-

sponse is due to the SST change alone. The net (LW 1
SW) DCRE changes by 1.14 W m22 for doubling CO2

and changing SST together and by 1.21 W m22 for

changing SST only (feedback), whereas the CO2-only

(fast response) change is 20.02 W m22. Thus, the fast

response is small. Since we are mostly concerned with

the differences between simulations with the same CO2

perturbation, using the total response should not affect

the feedback analysis.

b. Correlation/regression analysis

The analysis will first relate climate sensitivity to

feedbacks. We use linear correlation analysis to relate

global mean feedback values to climate sensitivity.

Similar analysis methods are used by Soden and Vecchi

(2011) and Zelinka et al. (2012a). The results are spa-

tially coherent, leading naturally to a discussion of par-

ticular physical regimes. The current analysis confirms

that cloud feedbacks are a critical source of intermodel

spread in climate sensitivity, and therefore we focus on

parameters that are related to cloud radiative effects

and explore how specific properties of clouds in the

simulations are related to the climate sensitivity. Cloud

radiative properties are evaluated, and then three areas

are highlighted: 1) moisture in and around clouds

(humidity and cloud water path), 2) the dynamic envi-

ronment around stratiform and convective clouds (large-

scale vertical velocity, stability, and convective mass

fluxes), and 3) cloud microphysical properties (particle

size and number).

Two outputs from a linear regression are used, the

correlation, or variance explained, and the regression

slope s, or magnitude explained. If climate sensitivity is

related to parameter X by g } sX, then X is only im-

portant if s is significantly different from zero. Statistical

significance is defined by the 95% confidence interval of

a two-sided t test. Even if linear regressions are not

perfect analysis tools, they provide guidance as to pa-

rameters and regions that are important for explaining

variance (or spread). We highlight significant global and

regional correlations and large slopes as potential in-

dicators of processes that are important for explaining

global climate sensitivity. Note that the units of the re-

gression slopes are different for different parameters.

Also note that correlation does not imply causation and

could just be that both sensitivity and a parameter are

correlated with another parameter. In contrast, global

and regional relationships with insignificant correlations

and slopes are unlikely to be related to climate sensitivity.

We produce maps that are based on both mean values

from the simulations and differences between pre-

industrial and future (doubled atmospheric CO2 con-

centration) simulations. As a regressor X, we use 1)

feedbacks, 2) mean base state from the 1 3 CO2 simu-

lations of selected variables, and 3) differences between

23 CO2 and 13 CO2 simulations of selected variables.

These latter differences will be estimated as the percent

difference per degree of change in local surface tem-

perature Ts (% K21) to try to isolate critical processes

that might respond to temperature. Results are not

strongly dependent on the exact normalization pro-

cedure of the differences.

3. Models and experiments

a. CESM description

The model used in this study is the Community Earth

System Model (CESM) of the National Center for At-

mospheric Research (NCAR). We focus on changes

between two versions of the CAM in CESM: version 4

(CAM4) and version 5 (CAM5). CAM4 is essentially

the same as NCAR CAM3 (Collins et al. 2004, 2006)

with modifications to the deep convective closure and

momentum transport (Neale et al. 2008). CAM5 in-

cludes a substantially revised physical parameterization

suite relative to CAM4 (Gettelman et al. 2010; Neale

et al. 2010). The only major moist physics parameteri-

zation remaining constant between CAM4 and CAM5

is the deep convective parameterization (Neale et al.

2008), and thus, they represent very different models.

b. Experiment description

To explore these sensitivities across a range of pa-

rameterizations, we use a suite of experiments with

different versions of CESM. The experiments contain

pairs of simulations for preindustrial (284.7 ppm) and

doubled (569.4 ppm) values of CO2. Experiments are

run with a Slab Ocean Model (SOM) or with fixed SST

and a specified 2 3 CO2 SST perturbation from the

climatological mean, following the method of Gettelman

et al. (2012) and similar to Cess et al. (1989). There are

a total of 8 SOM and 13 fixed-SST experiment simula-

tion pairs, which are listed in Table 1 along with their

geff. Details of the experiments are described in the

3546 JOURNAL OF CL IMATE VOLUME 26



appendix. The major set of experiments progressively

changes parameterizations between CAM4 and CAM5.

In total there are 21 simulation pairs representing

a diversity of parameterizations (structural uncertainty)

and model adjustment experiments (parameter un-

certainty) from two versions of an atmospheric GCM

(CAM version 4 and 5) with different physical param-

eterization suites in the same earth system model

(CESM). We note the caveat that we are not analyzing

coupled simulations in this ensemble, using only Slab

Ocean Model and uncoupled experiments to focus on

fast feedbacks. This small ensemble falls between pre-

vious work looking at large ensembles from a single

model (Piani et al. 2005; Sanderson et al. 2008; Rougier

et al. 2009) or multimodel analyses (Knutti et al. 2006;

Soden and Vecchi 2011; Webb et al. 2012).

Figure 1 shows the zonal annual mean climatological

values of longwave (Fig. 1a) and shortwave (Fig. 1a)

CRE from all 21 base (13CO2) runs in comparison with

satellite observations from the Energy Balance Ad-

justed Flux (EBAF) product, version 2.6, from the

Clouds and the Earth’s Radiant Energy System satellite

instrument (Loeb et al. 2009). There are significant dif-

ferences between the simulations (up to 40Wm22 in the

SW component in the tropics, partially balanced by the

LW), and some systematic biases. All of the simulations

TABLE 1. Description of runs used in this study and their effective climate sensitivity geff. Run types are either SOMormodifiedCess, with

horizontal resolution of either 0.98 3 1.258 (shown as 18) or 1.98 3 2.58 (shown as 28) as described in the text.

Name Type Resolution Description geff

CAM4-SOM SOM 18 CAM4 physics 3.1

CAM4-SOM2 SOM 28 CAM4 physics 3.1

CAM5-SOM SOM 18 CAM5 physics 4.0

CAM5-SOM2 SOM 28 CAM5 physics 4.2

CAM5-SOMa SOM 18 CAM5 physics, 1850 aerosols 4.5

CAM5-SOM2 1 SOM 28 CAM5.0a1 physics 4.4

CAM5-SOM2 2 SOM 28 CAM5.0a2 physics 5.7

CAM5-SOM2 3 SOM 28 CAM5.0a3 physics 4.2

CAM4-Cess Cess 28 CAM4 physics 5 CAM4–SOM2 2.8

1micro Cess 28 CAM4 physics 1 new microphysics (RHc 5 0.92) 2.7

1micro2 Cess 28 CAM4 physics 1 new microphysics (RHc 5 0.88) 2.4

1macro Cess 28 Above 1 new macrophysics 2.9

1rad Cess 28 Above 1 new radiation and cloud optics 3.7

1aero Cess 28 Above 1 new aerosol scheme 3.5

1PBL Cess 28 Above 1 new PBL (RHc 5 0.95) 2.9

1PBL2 Cess 28 Above 1 new PBL (RHc 5 0.91) 2.7

CAM5-Cessa1 Cess 28 Above 1 new ShCu scheme 5 CAM5–SOM2a1 4.4

CAM5-Cessa2 Cess 28 CAM5–SOM2a2 5.5

CAM5-Cess DSST4 Cess 28 CAM5–Cess with different DSST 4.8

CAM5-Cess Aero Cess 28 Fixed aerosol mass and number 4.5

CAM5-Cess Conv Cess 28 Modified deep convective LWP for radiation 5.4

FIG. 1. Zonal annual mean climatological values of (a) SW and (b) LW cloud radiative forcing from all 21 base

(1 3 CO2) runs (gray lines) and satellite observations (thick black line) from the EBAF product (Loeb et al. 2009).
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represent ‘‘Earthlike’’ states, however, with storm tracks

and significant equatorial cloudiness, with good qualita-

tive agreement with the observations. Other metrics of

the simulations that we discuss broadly resemble other

model estimates: for example, the cloud feedbacks in

the simulations (see Gettelman et al. 2012, their Fig. 6)

resemble kernel ACFs from models in the Coupled

Model Intercomparison Project, phase 3 (CMIP3; Meehl

et al. 2007a), calculated by Soden and Vecchi (2011) or

similar experiments in the Cloud Feedback Model In-

tercomparison Project, phase 1 (CFMIP1; Zelinka et al.

2012b).

4. Results

First, we analyze feedbacks in the 21 CESM experi-

ments. We will then look at the relationship between

sensitivity and feedbacks or model state in the CESM

simulations, focusing on cloud radiative properties, cloud

water and ice, the dynamics around clouds, and then

cloud microphysics.

a. CESM feedbacks

First, we consider feedbacks listed in Table 2 by fol-

lowing previous work (Colman 2003; Soden et al. 2008).

Figure 2 illustrates a statistically significant correlation

for the CAM simulations between geff and the kernel

ACFs divided into SW-feedback (ASCF; Fig. 2a) and

LW-feedback (ALCF; Fig. 2b) components. Each point

represents one of 21 experiment pairs. The LW correla-

tion is 20.90 (slope 20.09 W m22 K22), which explains

80% of the variance (Table 2). For the SW, the correla-

tion is 0.84 (r2 5 0.71) and the slope is 0.16 W m22 K22.

When compared with ASCF, ALCF has a similar cor-

relation but a smaller slope; that is, the variation in LW

feedback produces smaller changes in sensitivity than do

changes in the SW feedback. The physical interpretation

is that ALCF has a tighter fit but is less important for

explaining the magnitude (or spread) of the climate

sensitivity than is ASCF. This is consistent with theories

that LW cloud feedback is positive because of constant

tropical cloud-top emission temperature (Zelinka and

Hartmann 2010). Globally, ASCF and ALCF are anti-

correlated with each other (Fig. 2). This anticorrelation

arises from specific regimes and locations, discussed

below and shown in Fig. 3. This relationship is seen in

CMIP3 models (Soden and Vecchi 2011). The anti-

correlation and fact that ASCF has a larger slope when

regressed against climate sensitivity than does ALCF

TABLE 2. Table of correlations between geff and listed feedbacks

for CAM simulation pairs. Correlations that are statistically sig-

nificant on the basis of a two-sided t test at the 95% level are

marked with an asterisk. Also shown are the fraction of variance

r2 explained by the linear correlation and the regression slope

(W m22 K22). Feedbacks are described in the text.

Feedback Mean Correlation r2 Slope

Net cloud 0.67* 0.44 0.07

LW cloud 20.90* 0.80 20.09

SW cloud 0.84* 0.71 0.16

Albedo 20.56* 0.32 20.01

H2O 1 LR 0.21 0.04 20.006

TEMP 20.11 0.01 20.01

TS 20.45 0.20 20.006

FIG. 2. Effective climate sensitivity geff vs (a) ASCF and (b) ALCF from CAM experiment pairs. SOM experiments

are in blue, and modified Cess experiments are in red.
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indicates that clouds with both LW and SW (but stron-

ger SW) effects (Webb et al. 2006) are important for

explaining climate-sensitivity magnitude. The magni-

tude of the ASCF slope is nearly 2 times that of ALCF,

so that the net cloud feedback (ACF) correlation is

positive (Table 2).

The evolution of geff in the simulations between

CAM4 and CAM5 is described by Gettelman et al.

(2012) and can be deduced from Fig. 2 and Table 1. Two

groups of SOM experiments represent CAM4 (low geff)

and CAM5 (high geff). Sensitivities larger than 3.5 K

correspond to runs in which the new radiation code is

used, and sensitivities larger than 4 K are all simulations

with the CAM5 shallow convection scheme.

Correlations and slopes from this ensemble for the

major climate feedbacks lX are listed in Table 2. Albedo

feedbacks are significantly correlated with sensitivity,

but the small slope confirms that albedo feedbacks do

not explain the spread in sensitivity. Lapse-rate (LR)

feedbacks are estimated by subtracting a constant tem-

perature change with height from the total temperature

feedback (TEMP) by following the method of Soden

et al. (2008). Water vapor (H2O) and LR feedbacks are

less variable across models when combined than sepa-

rately (Colman 2003; Soden et al. 2008), and these are

not well correlated with geff. The surface temperature

feedback (TS) is large (Soden et al. 2008) but not well

correlated with geff. These results are consistent with

previous analyses of multimodel ensembles (Williams

and Webb 2009) and single model parameterization

sweep experiments (Rougier et al. 2009), showing that

cloud feedbacks dominate the climate sensitivity spread

in models.

We decompose the global regression spatially to ex-

plore which locations dominate the spread (regression

slope) in cloud feedbacks. Following the regional de-

composition of Webb et al. (2012), we set the cloud

feedbacks equal to the ensemble mean cloud feedback

outside a target region. The method isolates the corre-

lation contribution to specific regions, as the correlation

outside the region is zero, and the results are broadly

linear: the regional slopes in each region sum to the

global regression slope. Regions are the tropics within

308 of the equator, the midlatitudes (308–558N/S) and

high latitudes poleward of 558N/S. Area weights are

applied. The tropics contribute only 20% to the re-

gression, despite being 50% of the area, while the mid-

latitudes (with 30% of the area) contribute ;60% and

the high latitudes (20% area) contribute also 20% to the

regression for LW (ALCF), SW (ASCF), and net (ACF)

feedbacks. This is a similar breakdown to the regional

analysis for SW and net feedbacks in Gettelman et al.

(2012, their Fig. 7) for the mean feedback contribution.

The regression has higher weight in the midlatitudes,

indicating that the spread of sensitivity resulting from

the change in feedback is more dependent on the mid-

latitudes. The prominence of midlatitudes is different

than in other models (Webb et al. 2012) and multimodel

analyses (Soden and Vecchi 2011). However, using a

similar decomposition, (Webb et al. 2012) also found

that CCSM3, the predecessor model to CESM, has a

large contribution to sensitivity from midlatitudes. We

investigate these differences further below.

By repeating the correlation between the feedbacks at

each point and the global average climate sensitivity, the

regimes (locations) critical for relating feedbacks to

climate sensitivity in CESM can be identified. Albedo

feedbacks have locally strong correlations with climate

sensitivity (not shown) around the sea ice (and Northern

Hemisphere seasonal snow) edge, but none of the other

noncloud feedbacks in Table 2 have strong regional

correlations.

Figure 3 illustrates local correlations for cloud feed-

backs with global climate sensitivity geff. Figure 3 and

subsequent map figures are derived by interpolating

each experiment to a standard grid, then performing

a regression at each point against global geff (linear re-

gression on data similar to Fig. 2 at each point) and

mapping the correlation (Fig. 3) or regression slope (Fig.

5, described below). The value plotted in Fig. 3 is the

FIG. 3. Pattern correlations of geff with cloud feedbacks at each point from 21 CAM experiments for (a) SW, (b) LW, and

(c) net cloud feedback.
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correlation across simulations of the local cloud feed-

back with the global geff for the 21 experiment pairs. For

this and all subsequentmap figures, white colors indicate

regions where correlations are not statistically different

from zero.

Figure 3 illustrates that the global correlations in Fig. 2

arise mostly in the storm tracks in both hemispheres.

Correlations are also clear in the annual zonal mean

(Fig. 4, black line). There is strong regional cancellation

between the SW (Figs. 3a, 4a) and the LW (Figs. 3b, 4b).

The anticorrelation occurs in the same regions (espe-

cially the storm tracks), indicating reductions in clouds

with SW and LWeffects on the equatorward branches of

the storm tracks. Stratocumulus transition regions off

the eastern coasts of South America, Africa, and North

America also show up without LW effects, indicating

low stratus clouds. However, their area is small. The

transition regions do not show up in the zonal mean net

feedback (Fig. 4c), and they do not exert strong leverage

on the global correlations (Gettelman et al. 2012). The

SW feedbacks extend farther into the subtropics, down

to 308 latitude. The result is that the strongest correlation
between net cloud feedbacks (Fig. 3c) and climate sensi-

tivity is found on the equatorward flank of the storm

track at 308–608N/S (Fig. 4c).

In Fig. 4, cloud feedbacks are also decomposed by

season. There are small seasonal differences in correla-

tions (or regression slopes, not shown) between cloud

feedbacks and climate sensitivity. Correlations between

SW cloud feedbacks and climate sensitivity (Fig. 4a)

are slightly higher in the winter hemisphere. There are

hints of a different seasonality in the tropics. Taylor

et al. (2011b) note that SW cloud feedback in CCSM3

is larger in boreal summer in the tropics, similar to

Fig. 4a. In the LW (Fig. 4b) there is virtually no annual

cycle, but the Northern Hemisphere has stronger LW

feedbacks in summer. These effects are the opposite

seasonal sign of the mean CRE, where the SW peaks in

summer and the LW peaks in winter. Smaller seasonal-

CRE-magnitude seasons seem to be more correlated

with sensitivity.

Following Soden and Vecchi (2011) we also examine

the regression of the local cloud feedback at each point

with the global cloud feedback, as a different measure of

the regions contributing to the spread in cloud feedbacks

(Fig. 5). The regression slope between the local feed-

back and the climate sensitivity (W m22 K21) looks

similar to the correlations in Fig. 3, with the storm-track

regions and the subtropical oceans contributing promi-

nently to spread. However, the figure is significantly

different than a similar analysis from Soden and Vecchi

(2011, their Fig. 4), using CMIP3 models, which shows

the largest spread in cloud feedback in the subtropics

and the transition regions from stratocumulus to trade

cumulus. The CESM ensemble does highlight the sub-

tropical oceans and the Northern Hemisphere storm

tracks, similar to Soden and Vecchi (2011). The CESM

ensemble does not highlight the transition regions from

stratocumulus to cumulus clouds in the subtropics (at

208N and 208S), despite a different sign of cloud feed-

backs in these subtropical transition regions between

CAM4 and CAM5 (Gettelman et al. 2012, their Fig. 6).

It is also interesting that there is no relationship be-

tween local and global feedbacks in the CMIP3 models

in the Southern Ocean in Soden and Vecchi (2011),

where CESM shows significant regression slope and

where other analyses of CMIP3 models show significant

correlations of clouds with climate sensitivity (Trenberth

and Fasullo 2010) and clouds, subsidence, and humidity

(Fasullo and Trenberth 2012).

FIG. 4. Zonal mean seasonal correlations of geff with cloud feedbacks at each point from 21 CAM experiments for (a) SW, (b) LW, and

(c) net cloud feedback. Thick lines are statistically significant. Annual mean is shown in black. ANN indicates annual, and three-month

periods are labeled by the first letter of each month therein.
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b. CESM model state

To better understand the physical mechanisms that

give rise to these feedback correlations in the CESM

simulations, we can look at critical aspects of the model

state that define clouds. We group these parameters into

categories that we discuss in more detail: radiative

properties (cloud radiative effect and cloud occurrence),

moisture properties (liquid and ice water path; relative

humidity), dynamics of clouds (vertical velocity, stabil-

ity, and convective mass flux), and cloud microphysical

properties (number concentration and particle size).

Table 3 shows global regressions across the 21 experi-

ments between geff and properties of 1) the mean base

(13CO2) state of each parameter, 2) the percent change

between present and doubled-CO2 conditions for each

parameter, and 3) the percent change per degree of local

warming. The last two (methods 1 and 2) are essentially

the same when the local and global temperature changes

are related. Normalizing by local changes in tempera-

ture (method 3) allows isolation of process changes

relative to local (rather than global) changes in the

experiment pairs. It also facilitates comparisons be-

tween models with prescribed local surface temperature

perturbations. The correlations and slopes are generally

similar betweenmethods 2 and 3, both globally (Table 3)

and locally.We also perform regression analysis at every

point separately so that the critical regions or regimes

for each parameter can be explored. Global regressions

are not performed for vertical velocity, since the global

integral is zero.

c. Radiative properties

An analysis of cloud radiative effect (CRE) for both

SW(SWCRE) andLW(LWCRE), indicates a high global

correlation between the mean CRE and climate sensitiv-

ity (Table 3). It is not obvious that this should be the case,

and the spatial patterns between the SW and LW are

different. The base-state CRE correlations with climate

sensitivity (Figs. 6a,b) change sign between SW and LW

(as for cloud feedback in Fig. 3). SWCRE is generally

negative (Fig. 1a), and LWCRE is generally positive

(Fig. 1b). This indicates that smaller-absolute-magnitude

FIG. 5. Regression coefficient of geff with cloud feedbacks (W m22 K21) at each point from 21 CAMexperiments for (a) SW, (b) LW, and

(c) net cloud feedback.

TABLE 3. Table of correlations (corr) between geff and listed state variables for CAM simulation pairs. Correlations that are statistically

significant on the basis of a two-sided t test at the 95% level are marked with an asterisk. Also shown are the fraction of variance explained

by the linear correlation (r2 coefficient of determination) and the regression slope. Slope units in the first slope column are parameter units

per kelvin, and they are percent per kelvin in the other columns. Values are shown for themean parameter, the percent difference (%diff):

[(2 3 CO2) 2 (1 3 CO2)]/(1 3 CO2), and the percent difference per degree kelvin of warming. Parameters are defined in the text.

Parameter Units Mean corr r2 Slope % diff corr r2 Slope % Diff K21 corr r2 Slope

LWCRE W m22 20.82* 0.67 22.8 20.88* 0.79 22.3 20.86* 0.75 20.54

SWCRE W m22 0.64* 0.41 2.9 20.96* 0.93 23.1 20.96* 0.92 20.74

CLDLOW Fraction 20.07 0.01 20.002 20.70* 0.49 23.1 20.69* 0.48 20.72

TWP g m22 20.82* 0.67 225.0 20.74* 0.55 21.5 20.75* 0.56 20.87

LWP g m22 20.79* 0.62 222.0 20.65* 0.43 23.4 20.69* 0.47 20.85

IWP g m22 20.39 0.15 22.4 20.65* 0.42 22.1 20.57* 0.33 20.45

RH700 % 0.34 0.12 0.80 20.69 0.47 20.52 20.66* 0.43 20.11

LTS K 20.65* 0.43 20.18 0.54* 0.29 0.39 0.44 0.19 0.08

ShCuMF kg s21 0.43 0.19 0.001 20.91* 0.82 21.4 20.81* 0.65 20.30

DpCuMF kg s21 0.40 0.16 0.002 20.56* 0.31 21.3 20.55* 0.31 20.30

REL860 mm 20.71* 0.50 20.63 0.88* 0.78 1.1 0.87* 0.70 0.23

NC860 m23 0.29 0.30 8.8 3 106 20.75 0.54 22.8 20.74* 0.50 20.48
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SWCRE and LWCRE are correlated with higher cli-

mate sensitivity. Since the adjusted cloud feedback

(Figs. 3a,b) and the CRE (Figs. 6d,e) correlations are

similar, the correction for albedo effects (the difference

between them) does not have a strong impact.

The pattern correlations of percent difference per

degree of local warming (Figs. 6d,e) are very similar to

the feedback patterns (Figs. 3a,b) but with a change in

sign for the SW (because SWCRE is negative, the per-

cent change is divided by a negative number). The pat-

tern similarity indicates that the details of the regression

method (including the regressor) do not strongly affect

the identified regions. Although the feedback is DCRE/

DTs, here we examine DCRE/CRE/DTs. The percent

change in CRE per unit local warming is correlated with

geff, in the same regions where cloud feedbacks are

correlated with geff. An examination of correlationmaps

for the change in CRE calculated seasonally indicates

that the correlations with sensitivity are slightly stronger

in each hemisphere storm track in winter, similar to the

zonal mean picture for feedbacks in Fig. 4. The pattern

correspondence is a strong indication that the storm

tracks are critical and that the radiative effects of clouds

are important.

Changes in cloud frequency of occurrence are one

component of cloud feedbacks (Zelinka et al. 2012b),

and they have been used to assess feedbacks (e.g.,

Stephens 2005). Globally, percent-difference changes

in low clouds (cloud-top P . 700 hPa; CLDLOW) are

correlated with climate sensitivity while the mean state

is not correlated (Table 3). The lack of global correlation

results from opposite sign correlations between base

(1 3 CO2 state) CLDLOW and geff with negative cor-

relations over tropical oceans and positive correla-

tions at middle and high latitudes (Fig. 6c). Higher geff
in the CESM experiments is associated with fewer

base-state mean subtropical clouds and more high-

latitude clouds.

The change in low cloud drives the overall change in

total clouds and correlates strongly with sensitivity

(Fig. 6f). Correlations for total cloudiness (not shown)

are essentially the same. The local percent-difference

pattern for low clouds (Fig. 6f), matches that for the

response of SW CRE (Fig. 6d) and cloud feedbacks

(Fig. 3c). The correspondence is consistent with the

hypothesis that much of the signal in SWCRE contrib-

uting to cloud feedbacks is due to changes in areal extent

at latitudes up to 608N and 458S. There is some signal

in the subtropical stratocumulus transition regions in

CLDLOW. However, changes at high Southern Hemi-

sphere midlatitudes (458–608S in Fig. 6d) are not corre-

lated with low cloud changes (Fig. 6f). Attribution of the

cloud feedback to cloud-fraction changes in these re-

gions is consistent with the interpretation of Zelinka

et al. (2012b) from a suite of models from the CFMIP1

that cloud fraction changes are associated with the

feedback changes at midlatitudes, but in some locations

such as 458–608S other effects such as changes in cloud

optical depth that are not related to fraction changes are

important.

FIG. 6. Pattern correlations of geff with (top) mean base (13CO2) state values and (bottom) percent differences (D%) per degree of local

warming DTs from 21 CAM experiments for (a),(d) SWCRE, (b),(e) LWCRE, and (c),(f) low cloud fraction.
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d. Moisture

Since water vapor is not correlated with sensitivity,

and cloud radiative effect and cloud feedbacks are cor-

related, we next investigate condensed phase water. The

condensed phase species in the atmosphere, diagnosed

by the total condensed water path (TWP) and its com-

ponents liquid water path (LWP) and ice water path

(IWP), are strongly negatively correlated with climate

sensitivity (Table 3) for both for the base state (except

IWP) and the local percent perturbation. Water paths

are gridbox averaged and represent the product of the

in-cloud water path and total cloud fraction. Results for

in-cloud TWP (and components) are similar. In general,

TWP and LWP increase by 3%–6% in the 2 3 CO2

simulations while IWP decreases by 6%–10%, mostly in

the storm tracks and at high latitudes.

The regression of LWP at each point against climate

sensitivity is illustrated in Figs. 7a and 7d. Higher sen-

sitivity occurs with a smaller mean LWP (Fig. 7a) in

midlatitudes and a smaller percent increase in LWP in

high latitudes of the Southern Hemisphere (Fig. 7d).

Regressions over land are different because of different

specification of deep convective ice and liquid water

path over land and ocean in CESM. The base-state re-

gression of LWP with geff (Figs. 7a) reflects the cloud-

feedback correlations (Fig. 3) and changes in CRE

(Figs. 6d,e) and cloud fraction (Fig. 6f), suggesting that

the change in CRE is associated with gridbox-averaged

cloud-mass differences in the base state, particularly

poleward of 408N/S over oceans. An examination of

individual seasons (Fig. 8a) indicates that correlations

of base LWP and sensitivity are stronger in Northern

Hemisphere summer whereas there is little difference in

correlation by season in the Southern Hemisphere. The

percent changes in LWP (Fig. 7d) have significant re-

gression slope only in high latitudes, with some addi-

tional contribution from the stratocumulus transition

regions of the subtropics. Smaller increases in LWP are

correlated with increased sensitivity (less SW reflection

and cooling by lower clouds).

For IWP (Figs. 7b,e), the regression of the base-state

IWP with sensitivity is strongly positive over tropical

land (because of the specification of convective IWP)

and negative over tropical oceans as well as high lati-

tudes. This implies thinner ice clouds over tropical

oceans are associated with higher sensitivity. A similar

pattern over ocean is seen in the percent changes of IWP

(Fig. 7e) but with more prominence to the storm tracks,

where larger decreases in IWP are associated with

higher sensitivity, similar to feedback correlations (Fig. 3)

and regressions (Fig. 5). The shifting balance between

liquid and ice might be important, consistent with the

effect suggested by Senior and Mitchell (1993) that

melting ice to liquid (larger change in IWP) would mean

enhanced sedimentation rates, less cloud, and larger

negative cloud feedbacks (lower sensitivity). Shifts in

ice-cloud regions were also noted by Tsushima et al.

FIG. 7. Regression slope of geff with (top) mean base (1 3 CO2) state values and (bottom) percent differences (D%) per degree of local

warming DTs from 21 CAM experiments for (a),(d) LWP, (b),(e) IWP, and (c),(f) 700-hPa RH.
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(2006) and Ogura et al. (2008) as a contributor to dif-

ferences in climate sensitivity.

There are also significant relationships between rela-

tive humidity (RH) and climate sensitivity, in both the

base-state humidity (Fig. 7c) and the changes in RH

(Fig. 7f). Here, 700-hPa conditions (RH700) are shown,

but results are similar (although less significant), at

lower pressures in the troposphere. HighermeanRH700

is associated with higher climate sensitivity, perhaps

since higher RH, linked to cloud fraction through a pa-

rameterization (Slingo 1989), may make clouds more

sensitive. Note that the mean RH is important at higher

latitudes and near tropical convective regions. Changes

in RH (Fig. 7f) have large slope only on the equatorward

side of the storm tracks, indicating larger decreases in

RH associated with higher sensitivity, consistent with

regions of low cloud changes (Fig. 6f). No seasonality

is seen in the mean correlations with RH700 (Fig. 8c).

Tropical convective regions over ocean also are important

for RH, reflecting changes to convective detrainment,

which we examine in section 4e.

e. Dynamics

Of the feedbacks examined, cloud feedbacks have the

highest correlations with climate sensitivity, and these

correlations are consistent with changes to cloud radia-

tive effect and changes in cloud fraction and liquid (and

ice) water path. To better understand possible causes

for the cloud changes, we next look at parameters de-

scribing atmospheric dynamics that are important for

cloud processes. The following four metrics are explored:

1) lower-tropospheric stability [LTS, defined as the po-

tential temperature u difference between 700 hPa and

the surface (u700 2 usurface)], 2) the midtropospheric

(500 hPa) vertical velocity (OMEGA500), and the mass

fluxes in the GCM convective parameterizations, di-

vided into 3) deep (DpCuMF) and 4) shallow (ShCuMF)

convective mass flux. The LTS andOMEGA500metrics

focus on the environmental dynamics that are important

for low and stratus clouds, whereas the convective mass

fluxes are diagnostics for changes in cumulus clouds. For

ease of comparison, we use correlation maps (with the

FIG. 8. Zonal mean seasonal correlations of geff with cloud feedbacks at each point from 21 CAM experiments for (a) LWP,

(b) CLDLOW, (c) RH700, (d) OMEGA500, (e) ShCuMF, and (f) DpCuMF. Thick lines are statistically significant. Annual means are

shown in black.
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same units), but the same information is provided by

maps of regression slope.

The mean state of LTS is negatively correlated with

climate sensitivity (Table 3 and Fig. 9a) mostly over

ocean. Lower base-state stability is associated with

higher climate sensitivity. The correlations peak on the

equatorward part of the storm tracks, where base-state

stability is low. The correlations with changes in LTS

(Fig. 9d) are found only in limited regions of the sub-

tropics, where larger percent increases in stability are

associated with higher climate sensitivity on the flanks of

deep convective regions. This may seem counterintui-

tive, but these dynamic changes may affect convection

(see below) by altering the low-level instability that

triggers parameterized convection.

The midtropospheric vertical velocity (OMEGA500)

is regionally correlated with climate sensitivity (Fig. 8d).

There are correlations of opposite sign over the tropical

oceans with tropical upward motion (OMEGA500, 0)

associated with higher sensitivity. In the subtropics

OMEGA500 . 0 is associated with higher sensitivity

in regions that are similar to those associated with the

LTS changes. This implies a relation between LTS and

OMEGA500, but in the CESM simulations it does not

translate into large changes in cloud feedbacks in the

simulations as in other models (Soden and Vecchi 2011;

Brient and Bony 2013), but rather it affects the equa-

torward edge of the storm tracks.

There are no significant global correlations between

mean convective mass fluxes (DpCuMF and ShCuMF)

and geff (Table 3). This is because mean correlations

with climate sensitivity show a regional dependence of

different signs. Mean base-state ShCuMF over oceans

(Fig. 9b) is positively correlated over oceans with cli-

mate sensitivity (larger mean flux correlated with higher

sensitivity), with the opposite sign over land (also seen

in the zonal mean in Fig. 8e). Part of the correlation

arises from a fundamental change in CAM5 when a new

shallow convective scheme was introduced. The in-

troduction of this scheme significantly increased the

climate sensitivity (Gettelman et al. 2012) while shal-

low convective mass flux increased globally. There are

large percentage changes in ShCuMF that are cor-

related with sensitivity (Table 3), with decreases in

ShCuMF associated with higher sensitivity. This is seen

in the Southern Hemisphere storm track, but not as

clearly, in Fig. 9e.

Base-state DpCuMF (Figs. 8f, 9c) is positively corre-

lated with climate sensitivity over mid- and high lati-

tudes but has negative correlations in the subtropics

(where DpCuMF values are small). The subtropics have

stronger regional correlations (Fig. 8f). Correlations of

sensitivity with changes to convection aremore coherent

for deep convection than for shallow convection, par-

ticularly over the Southern Ocean (Fig. 9f), indicating

smaller mass flux increases in this region in simulations

with higher climate sensitivity (negative correlation).

This is the same region where there are correlations

between geff and cloud feedbacks (Fig. 3), radiative ef-

fect (Figs. 6d,e), fraction (Fig. 6f), and water/ice path

FIG. 9. Pattern correlations of geff with (top) mean base (13 CO2) state values and (bottom) (D%) per degree of local warming DTs from

21 CAM experiments for (a),(d) LTS, (b),(e) ShCuMF, and (c),(f) DpCuMF.
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(Figs. 7c,d). Mechanistically, deep and shallow con-

vective clouds contain radiatively active water and

detrain liquid and ice into stratiform clouds. More

water in convective clouds in CAMmeans less available

to stratiform clouds. Changes to convective fluxes will in

turn affect cloud properties, radiative effects, and hence

feedbacks. More deep and shallow convection (and

larger change) results in reduced stratiform cloud mass

and occurrence. This may also be combined with a

poleward shift of these regions (and smaller areal ex-

tent). While mechanisms are hard to disentangle in

CESM, it is clear that convective changes in the storm-

track region that supply condensate to stratiform clouds

are critical for the spread in climate sensitivity.

f. Microphysics

In addition to changes in cloud areal extent, changes

to cloud radiative properties can be induced by changes

to cloud microphysics. To diagnose these changes, we

look at two related metrics for properties of low liquid

clouds at 860 hPa near the top of the boundary layer: the

1) size (effective radius for liquid drops; REL860) and 2)

number concentration of liquid drops (NC860). Radius

and number are only available from 10 of 21 experi-

ments with CAM5microphysics. Therefore, here we are

sampling variability only in part of the ensemble.

There is a significant negative global correlation be-

tween climate sensitivity and REL860 (Table 3). The

slope (20.63 mm K21) is large given that the mean

REL860 is about 10 mm. Correlations are concentrated

in the storm-track regions (Figs. 10a,c), more poleward

than the cloud fraction (Fig. 3f) correlations, but in a

similar location to where the correlations of geff with

changes in liquid and ice water path are significant (Figs.

7c,d). The change may have to do with differences in

partitioning between liquid and ice in a warmer world

(more liquid in a warmer world), and the increases in

droplet number concentrations occurring in polar re-

gions as warming and poleward motion of the storm

track occurs. These effects might simply be the micro-

physical result of other changes to the cloud environ-

ment. Consistent with this effect, Tsushima et al. (2006)

found that changes in liquid–ice partitioning were im-

portant for changes in LWP leading to albedo and

SW CRE changes related to climate sensitivity. Ogura

et al. (2008) noted that the ice–liquid partitioning in

the storm tracks was important for climate sensitivity in

the Model for Interdisciplinary Research on Climate

(MIROC) GCM.

The shift is illustrated in Fig. 10b, where larger geff is

associated with higher base-state NC860 at high southern

latitudes and lower base-state NC860 at midsouthern

latitudes. Thus, there is also no global correlation be-

tween base-state NC860 and climate sensitivity (Table 3)

because of opposite regional signs. There are strong re-

gional correlations of smaller increases in drop number

FIG. 10. Pattern correlations of geff with (top) mean base (1 3 CO2) state values and (bottom) (D%) per degree of

local warming DTs from 21 CAM experiments for (a),(c) REL860 and (b),(d) NC860.

3556 JOURNAL OF CL IMATE VOLUME 26



with increasing geff in the simulations (Fig. 10d) at high

latitudes, coincident with correlations and regression for

smaller increases in liquid water path with increasing geff
(Fig. 7c). Thus, CESM simulations with high sensitivity

tend to have lower mean LWP and smaller changes to

LWP, along with smaller changes in NC860 and larger

decreases in NC860 at high latitudes than simulations

with low sensitivity. REL860 is not as coherent as cloud

feedback or condensate correlations. The radiative ef-

fect of smaller changes in NC860 is to minimize any

increase in SWCRE (reducing any cooling)—hence the

contribution to increased sensitivity at these high lati-

tudes poleward of the jet cores near 608S/N. As noted

however, correlation is not causation, and this might

be a reaction to warmer temperatures (more melting,

higher liquid fraction).

5. Discussion

Shortwave cloud feedback is known to be the largest

source of intermodel spread in climate sensitivity (Bony

et al. 2006; Soden and Vecchi 2011; Webb et al. 2012). In

these CESM simulations, the strongest net cloud feed-

back correlations with climate sensitivity are found in

the storm tracks of both hemispheres. These critical

regions are different than in other recent work (Soden

and Vecchi 2011) but are consistent with previous

analyses of the predecessor model to CESM (Webb

et al. 2012). Contributions from the subtropical strato-

cumulus transition regions are seen, but the net cloud

feedback correlations in these regions are small. Using

a larger ensemble than the differences between two

models (CAM4 and CAM5) in Gettelman et al. (2012),

the midlatitudes and subtropics are more prominent in

determining the spread of climate sensitivity in CESM.

To summarize, we discuss the result by regions and in-

dicate possible mechanisms for these results in CESM.

The largest effects are seen in the storm tracks (308–
608N/S). In the storm tracks, the spread of cloud feed-

backs (Fig. 3) is related to climate sensitivity in the same

regions as the changes to cloud radiative effect (Figs.

6d,e). Shortwave effects dominate (Figs. 3a, 6e), but the

longwave effect plays an offsetting role (Fig. 3d). The

biggest change in CESM occurs when a new shallow

convective scheme is introduced (Gettelman et al. 2012,

their Figs. 9 and 10). In the CESM simulations, the

changes in cloud radiative effect (Fig. 6e) and changes in

cloud fraction (Fig. 6f) are correlated with climate sen-

sitivity on the equatorward side of the storm tracks.

Thus, cloud-fraction changes (Fig. 6f) would seem to be

the dominant effect, consistent with results by Zelinka

et al. (2012b), and may be related to subtropical dry-

zone expansion (Fasullo and Trenberth 2012). However,

the meridional (poleward) motion of storm tracks seen

with warming (Lu et al. 2009) is not correlated with

sensitivity in the SOM experiments. CESM also has

changes in deep convection on the equatorward flank of

the storm tracks (Fig. 9f). Higher convective mass flux

in higher-sensitivity experiments (Figs. 8d, 9c) lowers

mean LWP and IWP by reducing condensate available

to stratiform clouds (Fig. 7), tending to make cloud

feedbacks more positive. Clouds may also be affected by

and feed back on free tropospheric humidity in the re-

gion (Figs. 7f, 8c), and convection is tied to the strength

of the tropical circulation (Fig. 8d), which is stronger

(more gross upward and downward motion) in higher-

sensitivity models. This illustrates the complex links

between parameterizations and physical processes that

affect feedbacks.

At high latitudes on the poleward flank of the jet

(around 608N/S) there are also relationships between

cloud feedbacks and sensitivity (Fig. 3c). In these re-

gions, smaller increases in low-cloud drop number (Fig.

10d) and LWP (Fig. 7b) are seen in higher-sensitivity

CAM5 experiments. These changes may indicate that

cloud properties (optical depth) and not cloud fraction

may also affect feedbacks in these regions. The largest

change in high-latitude feedbacks occurs when the new

microphysics is introduced in CESM (Gettelman et al.

2012, their Figs. 9c and 10). The phase change between

liquid and ice (Ogura et al. 2008) and the vertical motion

(Fasullo and Trenberth 2012) in these regions may also

be important. Note that cloud fraction in the region is

already high. However, these areas are small. Adjusted

cloud feedbacks in this region (Fig. 3c)may be sensitive to

the surface albedo kernel around the sea ice edge. The

uncertainty does not affect the changes in cloud parame-

ters that are coherent with sensitivity in the high latitudes.

In the tropics and subtropics in CESM experiments,

some evidence of relationships between global sensi-

tivity and the cloud feedbacks in the stratocumulus and

transition regions is seen (Figs. 3a, 5a). The changes to

cloud microphysics also induce the largest change in

cloud feedbacks in the tropics and subtropics (Gettelman

et al. 2012, their Figs. 9c and 10). Regional analysis in-

dicates that most of the spread in sensitivity in the

CESM ensemble does not result from the tropics

(within 308 of the equator). While deep convection is the

same in all of these experiments, radiative (detrainment;

ice cloud radiative properties) and dynamical (boundary

layer structure) properties are very different in the

tropics between CAM4 and CAM5, so it is not pre-

ordained that the tropical influence on the spread of

feedbacks should be low. Cloud ice in the tropics does

appear to be correlated with climate sensitivity (Figs.

7b,d), with less ice over ocean and more over land in the
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base state associated with higher sensitivity. Larger de-

creases in ice in the subtropics are associated with higher

sensitivity as well (Fig. 7d), but this does not seem to

affect cloud feedback spread in the tropics. However,

differences in base-state tropical and subtropical circu-

lations (represented by OMEGA500 in Fig. 8e) indicate

stronger tropical and subtropical overturning circula-

tions in the base states associated with higher climate

sensitivity, consistent with (Fasullo and Trenberth 2012).

RH700 (Fig. 8c) is consistent with these changes, with

lower RH in the subtropics and higher RH in mid-

latitudes correlated with higher sensitivity.

In CESM, the mean state appears to affect how clouds

in the storm tracks change in response to CO2-induced

temperature changes. The changes appear to alter 1) the

areal extent of shallow clouds and 2) the convective

cloud mass flux on the equatorward branch of the storm

tracks. Microphysics, by affecting cloud optical depth,

plays a larger role on the poleward side of the storm

track. The partitioning between the liquid and ice phases

in this region may be important. The differences in cli-

mate sensitivity appear to be reflected in the mean state

of cloud globally for condensed water mass and con-

vective mass fluxes. Deep and shallow convective fluxes

supply condensate to the stratiform clouds and so are

also involved in altering cloud extent and condensate to

impact cloud feedbacks. Higher mean convective fluxes

occur when the new shallow convective scheme is in-

troduced, and this is associated with reducedmean LWP

by removing condensate. There are coherent correla-

tions with tropical circulations and humidity associated

with low clouds. In general, thinner clouds and stronger

circulations are associated with higher sensitivity. This is

expressed through changes in cloud fraction on the

equatorward branch of the storm track and cloud con-

densate (and microphysics) within the storm track itself.

Thinner clouds are more likely to experience large ra-

diative changes and have larger feedbacks, even with

the same CRE, for the reasons discussed below. The

mechanism is similar to that seen in the MIROC GCM

byOgura et al. (2008), with larger changes in condensate

in the storm tracks leading to larger cloud feedbacks and

sensitivity, although the processes may be slightly dif-

ferent in CESM.

The relationship between LWP and cloud feedbacks

illustrates the problem in using observations of cloud

radiative effect to constrain models. All CESM simula-

tions produce similar structures in CRE in present-day

conditions (Fig. 1). CRE is a function of the cloud op-

tical depth t and cloud fraction a. The different model

solutions have different a, and differentDa, but they also
have different t and Dt. Following Feingold and Siebert

(2009), t } N1/3 3 LWP5/6 (where N is cloud drop

number concentration). Thus, there can exist multiple

combinations of N (or re, since N } r3e) and LWP to de-

rive the same t and CRE. Stated another way, CRE is

a nonunique function of cloud cover a, the mass of

condensate (LWP), and the particle size distribution

(defined by number concentration N or effective radius

re). Different base-state a, N, and LWP can yield the

same base-state CRE, but the response of these prop-

erties to changes in surface temperature can be differ-

ent. Thus, the perturbation to cloud radiative effect (and

hence cloud feedbacks) is not well constrained by mean

state CRE (e.g., Pincus et al. 2008), even though some

relationships are seen in the global value in the CESM

ensemble (Table 3). Furthermore, satellites have trou-

ble distinguishing the N and LWP components of t, re-

sulting in large uncertainties in satellite-retrieved LWP

(O’Dell et al. 2008; Seethala and Horváth 2010). With

respect to the distribution of cloud t in CESM, Kay et al.

(2012a) illustrate that the mean state of clouds is closer

to observations in CAM5 than in CAM4. The im-

provement results from the new two-moment micro-

physics and better consistency between cloud fraction

and cloud water.

6. Conclusions

CESM experiments analyzed here confirm that SW

cloud feedbacks are critical for understanding climate

sensitivity. The different factors that go into the spread

of cloud feedbacks have been examined by location

and related to parameters describing the properties of

clouds. The key feedback regions correlated with cli-

mate sensitivity in CESM are the midlatitude storm

tracks extending into the subtropics. In these regions,

CRE also is correlated with climate sensitivity. On the

equatorward branch of the storm tracks, the correlation

is coherent with mean base-state water content. De-

creases in mean water content are collocated with in-

creases to the mean convective supply of moisture in

these regions that occurs when a new shallow convective

scheme is introduced. At high latitudes, there appears to

be evidence of differences in cloud properties (number

concentration) and LWP that are correlated with the

spread in sensitivity or perhaps a result of changes in

liquid and ice partitioning.

Finding the ultimate ‘‘cause’’ of the difference in cli-

mate sensitivity among these simulations is elusive.

Regression analysis does not provide causation, only

correlation. We have sketched a coherent picture from

the CESM ensemble that indicates cloud feedbacks in

specific regions (subtropics and midlatitudes) are criti-

cal. The sensitivity and the feedbacks are a result of

specific processes that seem linked to changes in cloud
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frequency of occurrence and the supply of moisture

through the general circulation (vertical velocity) and

convective mass fluxes and are related to the environ-

mental humidity. At higher latitudes, mean condensate

and changes to number concentrations are important.

This may be a result of shifts in the liquid and ice balance.

The results above have been derived by use of two

different parameterization suites in a GCM (CAM4 and

CAM5) within the same coupled model framework

(CESM). The results are not strongly sensitive to how

the simulations are analyzed. The cloud response ap-

pears to be identical in a fixed-SST-only experiment (no

CO2 changes), indicating that the response is a slow

feedback response. The critical regions (the midlatitude

storm tracks) are very different than regions where

spread is seen in other model frameworks (e.g., Soden

and Vecchi 2011; Webb et al. 2012), where they have

been related to boundary layer changes (Brient and

Bony 2013). However, the strong spread of sensitivity in

the storm tracks is consistent with strong cloud feed-

backs in these regions (Zelinka et al. 2012b). These

changes are also consistent with the decomposition of

cloud feedback by cloud fraction and cloud properties

by Zelinka et al. (2012b). The results here are also

consistent with CCSM3 results by Webb et al. (2012),

the importance of the storm tracks in MIROC seen by

Ogura et al. (2008), and correlations between climate

sensitivity and absorbed solar radiation in the Southern

Ocean reported by Trenberth and Fasullo (2010). Ulti-

mately the focus in CESM appears to be low clouds in

the equatorward part of the storm tracks, but these seem

strongly affected by changes in the shallow convection

scheme,which significantly alters themean state of clouds

and condensate, but with the same base CRE. Other

studies have also noted the importance of the convection

scheme for climate feedbacks (Taylor et al. 2011a).

The CESM relationship in midlatitudes has a strong

physical basis in the nonunique relationship between

cloud optical depth and cloud radiative effect that may

confound our ability to constrain the microphysical

components (N; LWP) of cloud optical depth that de-

fines CRE. It is thus not surprising that similar CRE can

respond to changes in surface temperature differently,

yielding different cloud feedbacks and climate sensitivity.

Further work will extend this analysis to other model

systems. The difference between CESM results and

those of other single-model or multimodel analyses,

particularly those using similar methods (e.g., Soden and

Vecchi 2011) provides a very interesting avenue to ex-

plore why cloud feedbacks are different. However,

Klocke et al. (2011) highlight that statistical relation-

ships to present-day states in a single-model ensemble

do not seem to translate to a multiple-model ensemble.

The focus has been on radiative properties of the system

(CRE) that are nonunique functions of physical prop-

erties (LWP and IWP). Thus, care must be taken to link

relationships to physical properties of the system that

are well constrained beyond just regression analysis.

CRE is well observed but not well constrained. Com-

parisons with observations, for example, through the use

of satellite simulators (Bodas-Salcedo et al. 2011), are

helping to constrain the properties of present-day clouds

better (Kay et al. 2012a) and may yield additional con-

straints on climate feedbacks and climate sensitivity.
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APPENDIX

CAM Experiment Details

CAM experiments contain a total of 8 SOM experi-

ments and 13 standalone experiments, listed in Table 1.

Each experiment is two simulations, with different

values of CO2. SOM configurations follow Bitz et al.

(2012), with specified deep ocean heat fluxes, and are

run for 60 yr, with the last 20 yr analyzed. Atmosphere-

only model experiments have a perturbed SST for the

23 CO2 case specified in addition to the change in CO2

concentration. These ‘‘modified Cess’’ experiments are

described by Gettelman et al. (2012) and are similar to

62-K perturbation experiments originally described by

Cess et al. (1989). Modified Cess experiments have

a patterned SST perturbation and are run for 5 or 10 yr.

Feedbacks averaged over 5 or 10 yr are the same, and

therefore the results are not sensitive to experiment

length. SOM (Knutti et al. 2006) and SST perturbation

experiments (Gettelman et al. 2012) can reproduce

climate feedbacks and climate sensitivity in coupled

atmosphere–ocean simulations.

Experiment pairs are performed with CAM4 physics

(Neale et al. 2008) or CAM5 physics (Gettelman et al.

2010; Neale et al. 2010). There is one SOM run for each

model (CAM4-SOM; CAM5-SOM) at 0.98 3 1.258
horizontal resolution and one at 1.98 3 2.58 (-SOM2).

Results are not sensitive to these different resolutions

(Gettelman et al. 2012). There are three different pa-

rameter adjustment experiments of CAM5-SOM2 with

interim versions of the model, but with a host of
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different changes to the physics suite, labeled a1–a3.

These represent different experiments altering ice nu-

cleation, ice autoconversion, and convective cloud water

partitioning along with adjustment of the energy balance

with changes to the relative humidity threshold for

stratiform cloud formation (see below). These experi-

ments have a wide range of sensitivity in Table 1. There

is one run of the CAM5 physics with year-1850 aerosols

(CAM5-SOMa) designed to see if the aerosols affect

sensitivity. All other SOM runs use year-2000 aerosols.

In addition, there is a suite of 1.98 3 2.58modified Cess

(fixed SST perturbation) experiments that describe the

changes in parameterizations between CAM4 (CAM4-

Cess) and CAM5 (CAM5-Cess). These are listed se-

quentially in Table 1. Two of these experiments (1micro2,

1PBL2) have modified parameters for cloud formation

thresholds (RHc), designed to better close the planetary

energy balance that allows testing of the impact of this

tuning on sensitivity. Another experiment (Conv) has

perturbed the partitioning of LWP in convection over

land. These were designed to see whether single pa-

rameter adjustments affected sensitivity (they do not).

Last, there are modified Cess experiments with fixed

aerosol mass (Aero) and an SST perturbation from a

CAM4-SOM Run (DSST4); other runs use DSST from

CAM5-SOM. This experiment explores whether the

simulation setup alters sensitivity (not strongly).

REFERENCES

Bitz, C., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C.

Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sen-

sitivity of the Community Climate System Model, version 4.

J. Climate, 25, 3053–3070.

Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simula-

tion software for model assessment. Bull. Amer. Meteor. Soc.,

92, 1023–1043.

Bony, S., and Coauthors, 2006: How well do we understand and

evaluate climate change feedback processes? J. Climate, 19,

3445–3482.

Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud

feedback predicted by a climate model under global warming.

Climate Dyn., 40, 2415–2431, doi:10.1007/s00382-011-1279-7.

Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate

feedback as produced by 14 atmospheric general circulation

models. Science, 245, 513–516.
Charney, J. G., 1979: Carbon dioxide and climate: A scientific assess-

ment.NationalAcademyof ScienceTech.Rep., 22 pp. [Available

online at http://www.nap.edu/catalog.php?record_id512181.]

Collins, W. D., and Coauthors, 2004: Description of the NCAR

Community Atmosphere Model (CAM3.0). NCAR Tech.

Note NCAR/TN-4641STR, 214 pp. [Available online at

http://www.cesm.ucar.edu/models/atm-cam/docs/description/

description.pdf.]

——, and Coauthors, 2006: The formulation and atmospheric

simulation of the Community Atmosphere Model: CAM3.

J. Climate, 19, 2122–2161.

Colman, R., 2002: Geographical contributions to global climate

sensitivity in a general circulation model. Global Planet.

Change, 32, 211–243.

——, 2003: A comparison of climate feedbacks in general circula-

tion models. Climate Dyn., 20, 865–873.
Dessler, A. E., 2010: A determination of the cloud feedback from

climate variations over the past decade. Science, 330, 1523–

1527.

Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary

sources of spread of global warming estimates from coupled

atmosphere–ocean models. J. Climate, 21, 5135–5144.

Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The

role of subtropical subsidence in climate sensitivity. Science,

338, 792–794.

Feingold, G., and H. Siebert, 2009: Cloud–aerosol interactions

from the micro to the cloud scale. Clouds in the Perturbed

Climate System, J. Heintzenberg andR. J. Charlson, Eds.,MIT

Press, 319–338.

Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, andM. A.

Tschudi, 2011: Radiative forcing and albedo feedback from

the Northern Hemisphere cryosphere between 1979 and 2008.

Nat. Geosci., 4, 151–155.
Gettelman, A., and Q. Fu, 2008: Observed and simulated upper-

tropospheric water vapor feedbacks. J. Climate, 21, 3282–3289.

——, and Coauthors, 2010: Global simulations of ice nucleation

and ice supersaturation with an improved cloud scheme in the

Community Atmosphere Model. J. Geophys. Res., 115,

D18216, doi:10.1029/2009JD013797.

——, J. E. Kay, and K. M. Shell, 2012: The evolution of climate

feedbacks in the Community Atmosphere Model. J. Climate,

25, 1453–1469.

Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces

a cloud component in CO2 forcing. J. Climate, 21, 58–71.

Hansen, J., and Coauthors, 2002: Climate forcings in Goddard

Institute for Space Studies SI2000 simulations. J. Geophys.

Res., 107, 4347, doi:10.1029/2001JD001143.

Huber, M., I. Mahlstein, M. Wild, J. Fasullo, and R. Knutti, 2011:

Constraints on climate sensitivity from radiation patterns in

climate models. J. Climate, 24, 1034–1052.
Kay, J. E., and Coauthors, 2012a: Exposing global cloud biases in

the Community Atmosphere Model (CAM) using satellite

observations and their corresponding instrument simulators.

J. Climate, 25, 5190–5207.
——, M. M. Holland, H. C. Bitz, A. Gettelman, E. Blanchard-

Wrigglesworth, A. Conley, and D. Bailey, 2012b: The in-

fluence of local feedbacks and northward heat transport on the

equilibrium Arctic climate response to increased greenhouse

gas forcing. J. Climate, 25, 5433–5450.

Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining esti-

mates of climate sensitivity with present-day observations

through model weighting. J. Climate, 24, 6092–6099.
Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006:

Constraining climate sensitivity from the seasonal cycle in

surface temperature. J. Climate, 19, 4224–4233.

Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F.

Keyes, S. Kato, N. M. Smith, and T. Wong, 2009: Towards

optimal closure of the earth’s top-of-atmosphere radiation

budget. J. Climate, 22, 748–766.

Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of

the tropical belt since 1958. Geophys. Res. Lett., 36, L03803,

doi:10.1029/2008GL036076.

Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer,

M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007a: The

3560 JOURNAL OF CL IMATE VOLUME 26



WCRP CMIP3 multimodel dataset: A new era in climate

change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

——, and Coauthors, 2007b: Global climate projections. Climate

Change 2007: The Physical Science Basis, S. Solomon et al.,

Eds., Cambridge University Press, 747–845.

Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of

convection on ENSO: From a delayed oscillator to a series of

events. J. Climate, 21, 5904–5924.
——, and Coauthors, 2010: Description of the NCAR Community

Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/

TN-4861STR, 268 pp. [Available online at http://www.cesm.

ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.

pdf.]

O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid

water path from satellite-based passive microwave observa-

tions: A new climatology over the global oceans. J. Climate, 21,

1721–1739.

Ogura, T., S. Emori, M. J. Webb, Y. Tsushima, T. Yokohata,

A. Abe-Ouchi, and M. Kimoto, 2008: Towards understanding

cloud response in atmospheric GCMs: The use of tendency

diagnostics. J. Meteor. Soc. Japan, 86, 69–79.

Piani, C., D. J. Fraame, D. A. Stainforth, and M. R. Allen, 2005:

Constraints on climate change from amulti-thousandmember

ensemble of simulations. Geophys. Res. Lett., 32, L23825,

doi:10.1029/2005GL024452.

Pincus, R., C. P. Batstone, R. J. P. Hoffman, K. E. Taylor, and P. J.

Glecker, 2008: Evaluating the present-day simulation of clouds,

precipitation and radiation in climate models. J. Geophys. Res.,

113, D14209, doi:10.1029/2007JD009334.

Rougier, J., D. M. H. Sexton, J. M. Murphy, and D. Stainforth,

2009: Analyzing the climate sensitivity of the HadSM3 climate

model using ensembles from different but related experi-

ments. J. Climate, 22, 3540–3557.

Sanderson, B. M., and K. M. Shell, 2012: Model-specific radiative

kernels for calculating cloud and non-cloud climate feedbacks.

J. Climate, 25, 7607–7624.

——, C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008:

Towards constraining climate sensitivity by linear analysis of

feedback patterns in thousands of perturbed-physics GCM

simulations. Climate Dyn., 30, 175–190.

——, K. M. Shell, and W. Ingram, 2010: Climate feedbacks de-

termined using radiative kernels in a multi-thousand member

ensemble of AOGCMs. Climate Dyn., 35, 1219–1236.
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