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1 CLIMADA Damage Model

The CLIMADA model (Bresch, 2014) calculates property damages to buildings
and their contents due to TCs. CLIMADA has been successfully applied in
previous studies of cyclone damage (Raible et al, 2012). Della-Marta et al
(2010) and Schwierz et al (2009) applied CLIMADA to estimate damage from
European wind storms. Reguero et al (2014) applied CLIMADA to risks in the
Gulf of Mexico. As described in Bresch (2014), CLIMADA calculates damage
as dij = ai ∗ f(vij) where dij is the damage in U.S. Dollars (USD) at location i
for event j, ai is the asset value in USD at location i (see next section), vij is
the hazard intensity at location i for event j and f(vij) is the damage function,
a non-linear relationship mapping hazard intensity into a damage degree in
the range [0..1]. The damage amount for a particular hazard event j is thus
Dj =

∑
i dij . Upon calculation of all Dj , statistical properties such as mean

damage (D̄j) or damage of any exceedence probability can be computed based
on Dj .

CLIMADA generates 9 synthetic cyclone events for each track in a base set
of tropical cyclone tracks. This is a method for interpolation from a few tracks
to a regular track density field. The base input cyclone tracks can come from
observations or GCM simulations. Starting from a slightly perturbed location
compared to the original track at t=0, each probabilistic track deviates from
its original by following a directed random walk, ‘guided’ by the original track,
and with a perturbation to the wind speed randomly selected from a normal
distribution with mean of the actual speed and one standard deviation from all
the cyclone initial speeds. The area affected away from the center of the track
is determined by scaling relationships for the size of storms (Bresch, 2014).
This way, a probabilistic set of artificial tracks is created which preserves, as
long as the directed random walk does not veer too far away from the original,
the general characteristics of the original set, yet provides a much more robust
basis for landfall statistics (by giving a more robust estimate of the probability
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distribution of storms that would result from a given set of conditions) and
hence damage calculations (Bresch, 2014).

The damage function f(vij) can be derived from and calibrated to histori-
cal damage for any given region to account for regional differences in building
standards and for different types of property (small to large houses, commer-
cial buildings). However, for simplicity and consistency, the present study uses
a Gaussian error function, calibrated to the mainland US by comparing CLI-
MADA simulated damage with damage information for the US (Bresch, 2014).

The climada damage simulation results for tropical cyclones in the North
Atlantic has been validated by comparing with historic damage records, the
main source being the EM-DAT International Disaster Database (Ghua-Sapir
et al, 2015). The raw EM-DAT numbers of past years were inflated with a 2%
growth rate (i.e. inflated damage = past damage * 1.02n, with n the years since
damage occurred) and converted into a historic damage frequency curve (DFC).
This historic DFC was compared with the DFC as generated by CLIMADA
based on the same contiguous US portfolio of assets today as used in this study
and the damage function of CLIMADA was adjusted such that the low-frequency
tails of the DFCs match, but not exceed, historic data.

2 Spatial Disaggregation

Country level GDP data is spatially disaggregated using the Night Lights of the
World dataset (Elvidge et al, 2001; Chen and Nordhaus, 2011). The original
night-light intensity is non-linearly scaled to account for the concentration of
assets in densely populated areas (Sutton and Costanza, 2002). We therefore
obtain GDP (in USD) for every 10x10km grid cell across the planet for all
countries the World Bank provides GDP figures, which includes almost all TC
impact areas. This is similar to Chen and Nordhaus (2011), but at much higher
spatial resolution. Such an approach has the advantage of a consistent mapping
method everywhere on the planet, and the ability to use country level data
now and in the future. As noted by Chen and Nordhaus (2011), the night
lights data has the advantage of providing a consistent data set in places where
geographically located data is poor (developing countries). However, it does
have limitations in low density regions where lights are not bright enough to
register (Chen and Nordhaus, 2011).

3 Description of Climate Model and Simulations

The Community Earth System Model (CESM) version 1 is a comprehensive
earth system model with the option of fully coupling land, atmosphere, ocean
and sea ice (Hurrell et al, 2013). The atmosphere model, the Community Atmo-
sphere Model version 5 (CAM5) is described by Neale et al (2010) and features
a comprehensive set of physical parameterizations. At a horizontal resolution of
25km, the model has been shown to effectively reproduce the intensity and dis-
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tribution of TCs (Wehner et al, 2014; Bacmeister et al, 2014). There are some
clear biases in distribution in certain regions (Bacmeister et al, 2014), but the
general storm structure and intensity, and even interanual variability (Wehner
et al, 2014) compares well to observations.

Simulations are from high resolution (∼25km) simulations of the Commu-
nity Earth System Model (CESM) version 1. The simulations are described in
detail in Bacmeister et al (2016). They feature specified SSTs from either obser-
vations (OBS) or coupled simulations for two future scenarios. ‘R’ will denote
future scenarios. The two future scenarios have different Representative Con-
centration Pathways (RCPs) for future climate. These draw from the CESM
Large Ensemble using RCP8.5 (Kay et al, 2014) (R8.5) and a CESM Medium
Ensemble using RCP4.5 (Sanderson et al, 2015) (R4.5).

Two different surface coupling schemes are used in the simulations. First,
coupling the atmosphere to the ocean on the coarse 1◦ ocean model grid. How-
ever, as described in Bacmeister et al (2016) this coupling had impacts on the
TC wind climatology. Better physical consistency results from coupling on the
higher resolution atmosphere grid using pre-interpolated SST data sets. For
clarity of naming, we will use ‘c’ when referring to the 1◦ coupling. We can
harmonize cyclone statistics by using a pressure-wind relationship to rescale the
model output as discussed above. Three experiments are performed on the 1◦

coupling grid (OBSc, R4.5c and R8.5c). Two ensembles of 3 members each
were conducted with coupling on the higher resolution (25km) atmosphere grid
in present (OBS) and future (R8.5). The ensemble members are labeled in-
dividually, and the ensemble means are OBS and R8.5S1. Finally two more
runs (R8.5S2, R8.5S3) were conducted with alternative SST data sets (SST2,
SST3) from different members of the RCP8.5 large ensemble. There are thus
four different SSTs used: SST from RCP4.5 (SST4.5) and 3 SSTs from dif-
ferent RCP8.5 ensemble members from the CESM Large Ensemble (SST8.5-1,
SST8.5-2, SST8.5-3).

As discussed by Bacmeister et al (2016), SST2 has a broad tongue of warmer
SSTs in the eastern tropical Atlantic and a cooler central equatorial Pacific than
SST1. SST3 is significantly colder than SST1 (0.2-0.4K) over most of the tropics.

4 Pressure-Wind Relationship

The hurricane wind-pressure relationship has been investigated in several stud-
ies, including: Dvorak (1975),Atkinson and Holliday (1977), Knaff and Zehr
(2007) and Kossin (2014). In this study, we first established a quadratic least-
square fit for IBTRACS and present-day CAM5 simulations as

V0(P ) = a0P
2 + b0P + c0 (IBTRACS) (1)

V1(P ) = a1P
2 + b1P + c1 (CAM5) (2)

where V is the maximum sustained wind, P is the central pressure, and a, b,
and c are the coefficients for the least-square fit. We then attempt to match
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Table S1: Table of Simulations
Name SST Coupling Forcing Ensemble
OBSc Historical 1◦ Present
OBS1 Historical 0.25◦ Present 1
OBS2 Historical 0.25◦ Present 2
OBS3 Historical 0.25◦ Present 3
R4.5c SST4.5 1◦ RCP4.5
R8.5c SST8.5-1 1◦ RCP8.5
R8.5-1 SST8.5-1 0.25◦ RCP8.5 1
R8.5-2 SST8.5-1 0.25◦ RCP8.5 2
R8.5-3 SST8.5-1 0.25◦ RCP8.5 3
R8.5-S2 SST8.5-2 0.25◦ RCP8.5
R8.5-S3 SST8.5-3 0.25◦ RCP8.5

the wind-pressure relationship of present-day CAM5 simulations with that of
IBTRACS. For any given pressure P0, the factor

V0(P0)

V1(P0)
(3)

is applied to the wind field from CAM5 simulations. We do not apply any
scaling for central pressure greater than 1020 hPa. The same scaling factor, as
a function of pressure, is applied to future CAM5 simulations.

5 Surface Wind Scaling Algorithm

CESM produces output for sustained wind at 10m elevation for a grid box over
a time step (25km and 15 minutes). This is not the same as the International
Best Track Archive for Climate Stewardship (IBTRACS) observations (Knapp
et al, 2010), or the wind intensity measure that CLIMADA damage functions
are calibrated to (Bresch, 2014). IBTRACS uses sustained surface wind, scaled
from raw data which is peak gust (Knapp et al, 2010). So we need a method-
ology to ‘calibrate’ the output wind from the model to match the observations.
This could be done by calibrating the damage functions, but here we calibrate
the surface wind input to the model. To do this, we use a minimum pressure
and wind speed relationship as described above. A fit is derived for the observed
minimum surface pressure and observed sustained wind from the whole (1850-
2012) IBTRACS data set (Figure S1A). A scaling value is derived that optimizes
the fit between the observed IBTRACS sustained 10m wind (Figure S1A) and
the simulated 10m wind (Figure S1B and C) from the OBS (or historical) simu-
lations (1979-2012). The model 10m wind is itself scaled down from the lowest
model level wind (Neale et al, 2010).

This step is designed to calibrate the simulated wind input into CLIMADA
from the model, with the ‘observations’ (which themselves have been corrected
from actual wind measurements). The calibration uses input globally for all
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(B) CAM5, set 1
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(C) CAM5, set 2
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Figure S1: Pressure wind relationship from (A) IBTRACS observations scaled
to best guess (fit is solid black line) and (B,C) CAM model simulations for (B)
set 1 (1◦ surface coupling) and (C) set 2 (0.25◦ coupling). Solid black line in
(B,C) is the fit, dash dot line is observed fit from (A).

storms in all basins for present day simulations only. Because there are two
different model formulations of the surface coupling that have different wind
speed surface pressure relations, we do this once for each set of simulations
(Figure S1B and C). The fits are then applied to each model simulation for
the present and future. Figure S1 illustrates the basic physical structure of
simulated storms based on the pressure-wind relationship. Note that this scaling
calibrates the observed wind to the model output wind based on a physical
relationship that should be invariant with time.

The goal of this process is to adjust the model simulations so that they
reflect the same assumptions as observations. Central surface pressure is fairly
well defined, but the maximum sustained wind is not that well defined since it
can vary strongly in the vertical between the surface (where it is measured), a
standard 10m level, or the 60m midpoint of the lowest model level. Hence it is
useful to adjust the wind speed input into the damage calculation using different
curves for the different surface coupling resolutions: 1◦ (Set1, Figure S1B), and
0.25◦ (Set 2, Figure S1C).

6 List of countries in each region

We break countries affected by TCs into different regions based on geography.
The United States also includes Bermuda. Central America and the Caribbean
includes the countries listed. We estimate the Pacific Islands (including New
Zealand and Paupa New Guinea) separately. East and South East Asia extends
to the Philippines, Vietnam and Thailand. Finally, the Indian Ocean region
includes Indonesia, Australia, Malaysia and the rest of the nations in the region.

1. United States: Bermuda, United States.

5



2. Central America and Caribbean: Anguilla, Antigua and Barbuda, Aruba,
Bahamas, Barbados, Belize, British Virgin Islands, Cayman Islands, Colom-
bia, Costa Rica, Cuba, Dominca, Dominican Republic, El Salvador, Grenada,
Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Montserrat, Nicaragua,
Panama, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent
and the Grenadines, Trinidad and Tobago, Turks and Caicos Islands, US
Virgin Islands, Venezuela.

3. East and Southeast Asia: Cambodia, China, Hong Kong, Japan, Korea,
Laos, Philippines, Taiwan, Thailand, Vietnam.

4. Indian Ocean: Australia, Comoros, India, Indonesia, Madagascar, Malaysia,
Mauritius, Mozambique, Myanmar, New Caledonia, Pakistan, Seychelles,
Singapore, Sri Lanka.

5. Pacific Islands: Fiji, Guam, Kiribati, Marshall Islands, Micronesia, New
Zealand, Northern Mariana Islands, Palau, Papua Newtab Guinea, Pit-
cairn Islands, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu.

7 Storms and Damage by Region

Supplement Figure S2 shows historical storm frequency in each region based
on IBTRACS and the OBS simulations, similar to Figure 1 in the main text.
There are large differences in the Indian Ocean between IBTRACS and CAM
(Figure S2C). Note that the observational record in IBTRACS is poor in this
region, so the results are highly uncertain. Note in Table 1 in the main text
that the Indian ocean basin only minimally contributes to global damage.

Supplement Figure S3 shows historical storm damages by region, similar to
Figure 2 in the main text. Where statistics are robust in East Asia (Figure S3B)
there is a significant correlation in annual damage between IBTRACS storms
and simulated storms.

Supplement Figure S4 illustrates average annual damages by region, simi-
lar to Figure 3 in the main text. In the USA (Figure 3A in the main text),
C. America (Figure S4A) and Indian (Figure S4C) regions damage does not
increase with future storms. It goes down in the USA region. However, the
E. Asia region (Figure S4B) sees a large increase in storm damage with future
storms that drives the global values.

bac
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Figure S2: Number of storms per year in (A) S. Atlantic, (B) Indian ocean and
(D) global from IBTRACS (lines) and model simulations (bars). Solid line is
all simulated storms, dashed line is simulated Category 3–5 storms. Histogram
is observed number of all storms (Red) and Category 3-5 (Green).
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Figure S3: Timeseries of annual loss from mean CAM simulation damage (blue
line), range across CAM simulations (green bars) and IBTRACs (black line)
for (A) Central America and Caribbean, (B) East Asia and (C) Indian Ocean.
Damage in billion USD (left scale) and percent loss (right scale).
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Figure S4: (A) C. America (B) E. Asia and (C) Indian region global annual mean
cyclone damage estimates for 2015 (left) and 2070 assets (right) for different
CLIMADA simulations. Legend indicates CAM simulations: asterix ’c’ are 1◦

coupling, open circles are 0.25◦ coupling simulations. Damage from observed
(IBTRACS) storms as a black square. Different time periods are indicated by
horizontal offsets (columns): IBTRACS on the left, then OBS (present day),
RCP4.5 center and RCP8.5 climates right side of each time label.
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Schwierz C, Köllner-Heck P, Mutter EZ, Bresch DN, Vidale PL, Wild M, Schär
C (2009) Modelling European winter wind storm losses in current and future
climate. Climatic Change 101(3-4):485–514, DOI 10.1007/s10584-009-9712-1

9



Sutton PC, Costanza R (2002) Global estimates of market and non-market
values derived from nighttime satellite imagery, land cover, and ecosystem
service valuation. Ecological Economics 41(3):509–527

Wehner MF, Reed KA, Li F, Prabhat, Bacmeister J, Chen CT, Paciorek C,
Gleckler PJ, Sperber KR, Collins WD, Gettelman A, Jablonowski C (2014)
The effect of horizontal resolution on simulation quality in the Community
Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6(4):980–997, DOI
10.1002/2013MS000276

10


