

Modeling feedbacks and interactions between the land, climate, and human systems in the Community Land Model (CLM4): Successes and further research needs

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado

Peter Lawrence, Samuel Levis, and Keith Oleson National Center for Atmospheric Research Boulder, Colorado

> 15 December 2010 2010 AGU Fall Meeting San Francisco, California

NCAR is sponsored by the National Science Foundation

1. Introduction

The Anthropocene

Population of the world, 1950-2050, according to different projection variants (in billion)

Source: United Nations, Department of Economic and Social Affairs, Population Division (2009): World Population Prospects: The 2008 Revision. New York Human activities (agriculture, deforestation, urbanization) and their effects on climate, water resources, and biogeochemical cycles

2. Models

The Community Earth System Model

(IPCC 2007)

Earth system models use mathematical formulas to simulate the **physical**, **chemical**, and **biological** processes that drive Earth's atmosphere, hydrosphere, biosphere, and geosphere

A typical Earth system model consists of coupled models of the **atmosphere**, **ocean**, **sea ice**, and **land**

Land is represented by its ecosystems, watersheds, people, and socioeconomic drivers of environmental change

The model provides a comprehensive understanding of the processes by which people and ecosystems feed back, adapt to, and mitigate global environmental change

2. Models

The Community Land Model

Fluxes of energy, water, and carbon and the dynamical processes that alter these fluxes

Oleson et al. (2010) NCAR/TN-478+STR

Spatial scale

- 1.25° longitude × 0.9375° latitude
 (288 × 192 grid)
- 2.5° longitude × 1.875° latitude (144 × 96 grid)

Temporal scale

- 30-minute coupling with atmosphere
- Seasonal-to-interannual (phenology)
- Decadal-to-century climate (disturbance, land use, succession)
- Paleoclimate (biogeography)

3. Crops

Crop model improves leaf area phenology

(Sam Levis, NCAR)

3. Crops

Crop model improves surface fluxes and climate

The urban heat island

(Keith Oleson, NCAR)

Urban climates differ from rural climates

Present-day climate

Cities have more hot days and warm nights than rural land

21st century climate change

Cities increase more in hot days and warm nights than rural land

(Keith Oleson, NCAR)

Historical land cover change, 1850 to 2005

Future land cover change, 2005 to 2100

Future land cover change, 2005 to 2100

Land use - wood harvest

Land use carbon emission is prominent feedback

Global Land Use and Land Cover Change Carbon Fluxes

(Peter Lawrence, NCAR)

5. Land use

Surface albedo increases

Opposing trends in vegetation

Leaf area index (Jun, Jul, Aug) (Present-day - Pre-industrial)

Single forcing simulation Land cover change only

Loss of leaf area, except where reforestation

All forcing simulation CO₂ Climate Nitrogen deposition Land cover change

Increase in leaf area, except where agricultural expansion

Conclusions

Earth system models

Now represent human modification of the biosphere from land use and land cover change (e.g., agriculture, deforestation) and urbanization

Agroecosystems

□ Representation of agricultural systems improves simulation

Cities

Cities respond differently to climate change than do other land cover types

Anthropogenic land cover change

- □ Land use carbon emission is prominent
- Higher albedo of croplands cools climate
- Less certainty about role of evapotranspiration
- Implementation of land cover change (spatial extent, crop parameterization) matters, as does the simulation of natural vegetation