The Greening of Climate Models and Their Applications to Understand the Role of Terrestrial Vegetation in the Climate System

> Gordon Bonan Terrestrial Sciences Section/Climate and Global Dynamics Division National Center for Atmospheric Research Boulder, Colorado

> > Alternative title: What have climate models taught us about ecology?

Advanced Study Program Summer Colloquium National Center for Atmospheric Research Boulder, CO 5 June 2007

Community Climate System Model (CCSM)

Other resolutions

Atmosphere: T31, 3.75° (96 \times 48 grid); T85, 1.4° (256 \times 128 grid)

Ocean: 3.6° in longitude (100 \times 116 grid) with 25 vertical levels

Large community effort (NCAR, DOE national labs, universities)

Uses mathematical formulas to simulate the physical, chemical, and biological processes that drive Earth's climate

• Atmosphere: 2.8° in longitude and latitude with 26 vertical levels (128 \times 64 \times 26 grid points [212,992 grid points])

• Land: 2.8° in longitude and latitude with 10 soil and 5 snow layers ($128 \times 64 \times 15$ grid points)

• Ocean: 1.1° in longitude with 40 vertical levels (320 x 384

x 40 grid points [4,915,200 grid points])

• Sea ice: ~ 1° in longitude and latitude

Equations are solved every 20-minutes for atmosphere and land and every 60-minutes for ocean and sea ice

Typical simulation: several hundred model years

What emerges from trillions of computer calculations is a picture of the world's climate in all its complexity

Community Land Model

Hydrometeorology

Community Land Model

• Land model for Community Climate System Model

• Developed by the CCSM Land Model Working Group in partnership with university and government laboratory collaborators

Bonan et al. (2002) J Climate 15:3123-3149 Oleson et al. (2004) NCAR/TN-461+STR Dickinson et al. (2006) J Climate 19:2302-2324 Energy fluxes: radiative transfer; turbulent fluxes (sensible, latent heat); heat storage in soil; snow melt

Hydrologic cycle: interception of water by leaves; infiltration and runoff; snow accumulation and melt; multi-layer soil water; partitioning of latent heat into evaporation of intercepted water, soil evaporation, and transpiration

Hvdroloav

Community Land Model

Carbon cycle and dynamic vegetation

Bonan et al. (2003) Global Change Biology 9:1543-1566 Levis et al. (2004) NCAR/TN-459+IA

First-generation models

Simple energy balance model: $(1-r)S\downarrow + \varepsilon L\downarrow = L\uparrow[T_s] + H[T_s] + \lambda E[T_s]$ Prescribed surface albedo Bulk parameterizations of sensible and latent heat flux No influence of vegetation on surface fluxes Prescribed soil wetness factor β or calculated wetness from bucket model No soil heat storage

Green world vs desert world

Two climate model experiments

Wet - evapotranspiration not limited by soil water; vegetated planet Dry - no evapotranspiration; desert planet

Second-generation models

Vegetation and hydrologic cycle

Biosphere-Atmosphere Transfer Scheme (BATS)

Precipitation - Sun -

Dickinson et al. (1986) NCAR/TN-275+STR

Sellers et al. (1986) J Atmos Sci 43:505-531

Land degradation

Land degradation

Climate model experiments

Degradation scenario - the vegetation type within the shaded area was changed to type 9 to represent degradation: less vegetation, lower LAI, smaller surface roughness length, higher albedo, sandy soil

Broadleaf evergreen tree

Broadleaf shrub/ground cover

Broadleaf	tree/ground	cover

Broadleaf shrub/bare soil

	Type 1	Туре 6	Type 8	Type 9
Surface albedo ^{a,b}	0.13	0.20	0.20	0.30
Roughness length (m) ^a	2.65	0.95	0.25	0.06
Vegetated fraction	0.98	0.30	0.10	0.10
Leaf area index ^{a,c}	5.0	4.1	0.9	0.3
Minimum stomatal resistance (s m ⁻¹)	153	165	855	855
Root depth (m)	1.0	0.5	0.5	0.5
Volumetric moisture at wilting point	0.12	0.13	0.05	0.04
Volumetric moisture at saturation	0.42	0.42	0.44	0.44
Hydraulic conductivity at saturation \times 10 ⁵ (m s ⁻¹)	2.0	2.0	17.6	17.6
Matric potential at saturation (m)	-0.086	-0.086	-0.035	-0.035

^a JAS mean value for a parameter with monthly variation.

^b Surface albedo was as calculated in the control ensemble.

^c Canopy capacity (mm) is given by $0.1 \times \text{leaf}$ area index.

Climate impacts

July-August-September precipitation differences (mm/day) due to degradation. Differences that are significant at the 95% confidence level are shaded and the degraded area is enclosed by a solid line.

July-August-September mean differences due to degradation. Values are means over the degraded area. D-C is the difference between degraded and control values.

	Control	D–C
Cloud cover	0.42	-0.06 (-14%)
S_n (W m ⁻²)	241	-20** (-8%)
L_n (W m ⁻²)	-90	-9 (+10%)
R_n (W m ⁻²)	151	$-29^{**}(-19\%)$
$H (W m^{-2})$	102	-14^{**} (-14%)
$LE (W m^{-2})$	50	-15* (-30%)
T_s (K)	307.1	+0.2
Boundary layer θ_e (K)	343.4	-2.7
$P \pmod{\text{day}^{-1}}$	2.1	-0.7* (-32%)
$E \text{ (mm day}^{-1}\text{)}$	1.7	-0.5* (-30%)
MC (mm day ⁻¹)	0.4	-0.2 (-50%)

* Significant at the 90% confidence level.

** Significant at the 95% confidence level.

Tropical deforestation

July 28, 2000

(NASA/GSFC/LaRC/JPL)

Settlement and deforestation surrounding Rio Branco, Brazil ($10^{\circ}S$, $68^{\circ}W$) in the Brazilian state of Acre, near the border with Bolivia. The large image covers an area of 333 km x 333 km.

(National Geographic Society)

Tropical deforestation

Warmer, drier tropical climate

Annual response to Amazonian deforestation in various climate model studies. $\Delta albedo$ and Δz_0 indicate the change in surface albedo and roughness due to deforestation (+, increase; -, decrease). ΔT , ΔP , and ΔET are the simulated changes in temperature, precipitation, and evapotranspiration. Shading denotes warmer, drier climate.

	Surface Change		Climate Change		
Study	∆albedo	Δz_0	ΔΤ	ΔΡ	ΔΕΤ
			(°C)	(mm)	(mm)
Dickinson and Henderson-Sellers (1988)	+	-	+3.0	0	-200
Lean and Warrilow (1989)	+	-	+2.4	-490	-310
Nobre <i>et al.</i> (1991)	+	-	+2.5	-643	-496
Dickinson and Kennedy (1992)	+	-	+0.6	-511	-256
Mylne and Rowntree (1992)	+	unchanged	-0.1	-335	-176
Henderson-Sellers et al. (1993)	+	-	+0.6	-588	-232
Lean and Rowntree (1993)	+	-	+2.1	-296	-201
Pitman <i>et al.</i> (1993)	+	-	+0.7	-603	-207
Polcher and Laval (1994a)	+	unchanged	+3.8	+394	-985
Polcher and Laval (1994b)	+	-	-0.1	-186	-128
Sud et al. (1996)	+	-	+2.0	-540	-445
McGuffie et al. (1995)	+	-	+0.3	-437	-231
Lean and Rowntree (1997)	+	-	+2.3	-157	-296
Hahmann and Dickinson (1997)	+	-	+1.0	-363	-149
Costa and Foley (2000)	+	-	+1.4	-266	-223

Third-generation models

Bonan (1995) JGR 100:2817-2831 Denning et al. (1995) Nature 376:240-242 Denning et al. (1996) Tellus 48B:521-542, 543-567

CO2 fertilization and stomatal conductance

Leaf photosynthesis and conductance response to atmospheric CO₂ concentration, light-saturated

- (a) Dependence of leaf-scale photosynthesis for C_3 and C_4 vegetation on external CO_2 concentration
- (b) The C_3 photosynthesis curves for unadjusted (C and P) and down-regulated (PV) physiology
- (c) Dependence of stomatal conductance on CO_2 concentration for the unadjusted and down-regulated cases.

Photosynthesis increases and stomatal conductance decreases with higher atmospheric CO_2

CO_2 fertilization and stomatal conductance

 CO_2 fertilization (RP, RPV) reduces canopy conductance and increases temperature compared with radiative CO_2 (R)

Global climate:

Reduced conductance Reduced evaporation Reduced precipitation Warmer temperature

Fourth-generation of models

Dynamic vegetation

Foley et al. (1996) GBC 10:603-628 Levis et al. (1999) JGR 104D:31191-31198 Levis et al. (2000) J Climate 13:1313-1325 Cox et al. (2000) Nature 408:184-187

Model validation - tower fluxes

Boreal Ecosystem Atmosphere Study (BOREAS)

Vegetation dynamics

Bonan et al. (2003) Global Change Biology 9:1543-1566

Greening of North Africa

Climate 6000 years BP

Increased Northern Hemisphere summer solar radiation

Strengthened African monsoon

Wetter North African climate allowed vegetation to

expand

Kutzbach et al. (1996) Nature 384:623-626

Greening of North Africa

-50-45-40-35-30-25-20-15-10-5 0 5 10 15 20 25 30 35 40 45 50

Precipitation Change From Present Day

<u>Dominant forcing</u> Increase in evaporation Decrease in soil albedo

Levis et al. (2004) Climate Dynamics 23:791-802

Effect of boreal forests on climate

Maximum satellite-derived surface albedo during winter

Barlage et al. (2005) GRL, 32, L17405, doi:10.1029/2005GL022881

Vegetation masking of snow albedo -Tree-covered land has a low albedo during winter

Colorado Rocky Mountains

Effect of boreal forests on climate

Climate model simulations show boreal forest warms climate

Forest warms climate by decreasing surface albedo Warming is greatest in spring but is year-round Warming extends south of boreal forest (about 45°N)

Effect of boreal forests on climate

Vegetation change since Last Glacial Maximum

Climate model experiments

Southward retreat of boreal forest is thought to have reinforced glacial climate.

Expansion of boreal forest northward 6000 years BP is thought to have warmed climate.

Climate of the 20th Century

Departures in temperature in °C (from the 1961-1990 average)

What are the causes of this observed climate change?

20th Century climate forcings

The combination of natural and anthropogenic forcings can match the observed temperature record

Land use forcing of climate

Land use forcing of climate

Albedo difference (present day - natural vegetation)

Land use forcing of climate

Summer Surface Air Temperature Difference (Present Day - Natural Vegetation)

Four paired climate simulations with CAM2 using two land surface models

NCAR LSM
 CLM2

and two surface datasets

Biome dataset without subgrid heterogeneity
Dataset of plant functional types with subgrid heterogeneity

Conclusion

Magnitude of cooling associated with croplands is sensitive to surface datasets and model physics

Climate of the 21st century

What is the vegetation forcing of climate?

Future land cover change as a climate forcing

Future IPCC SRES Land Cover Scenarios for NCAR LSM/PCM

b) B1 2050 land cover

c) B1 2100 land cover

d) A2 2050 land cover

e) A2 2100 and cover

Forcing arises from changes in

Community composition Leaf area Height [surface roughness] \$ Surface albedo Turbulent fluxes

Hydrologic cycle Also alters carbon pools and fluxes, but most studies of land cover change have considered only biogeophysical

processes

Feddema et al. (2005) Science 310:1674-1678

Future land cover change as a climate forcing

PCM/NCAR LSM transient climate simulations with changing land cover. Figures show the effect of land cover on temperature

(SRES land cover + SRES atmospheric forcing) - SRES atmospheric forcing

Carbon cycle

Carbon cycle feedback

Three climate model simulations to isolate the climate/carbon-cycle feedbacks

- Prescribed CO2 and fixed vegetation (a 'standard' GCM climate change simulation)
- Interactive CO_2 and dynamic vegetation but no effect of CO_2 on climate (no climate/carbon cycle feedback)
- Fully coupled climate/carbon-cycle simulation (climate/carbon cycle feedback)

C4MIP - Climate and carbon cycle

Experimental protocol

Eleven climate models of varying complexity with active carbon cycle

Transient climate simulations through 2100 forced with historical fossil fuel emissions and IPCC SRES A2 emissions

Vegetation forcings of climate

Direct biogeochemical effect (atmos. CO₂)
Indirect biogeophysical effect (stomata, leaf area, biogeography)

Results

Models have large uncertainty in simulated atmospheric CO_2 at 2100 (range is from 730 ppm to 1020 ppm)

C4MIP - Climate and carbon cycle

Large uncertainty in terrestrial fluxes at year 2100

- 1 model simulates a 6 Gt C/yr source of carbon from land
- 1 model simulates a 11 Gt C/yr terrestrial carbon sink
- 2 models simulate carbon source

Relatively less uncertainty in ocean fluxes

All models simulate carbon uptake ranging from 4-10 Gt C/yr at year 2100

C4MIP - Climate and carbon cycle

Climate-carbon cycle feedback

• All models show larger atmospheric CO_2 concentration when climate is allowed to change in response to CO_2

• That is, all models have a positive climate-carbon cycle feedback

• This difference between fully coupled climatecarbon cycle simulations and uncoupled simulations (CO_2 has no radiative effect) ranges from 20 ppm to 200 ppm

Conclusion

• Terrestrial carbon cycle can be a large climate feedback

• Considerable more work is needed to understand this feedback

• How will carbon cycle science be advanced? Is there a tradeoff between more complexity (e.g., nitrogen, wildfire, dust fertilization) and understanding?

CCSM1 - C4MIP simulation

Correlation of air temperature with soil moisture

Low latitudes

Negative correlation: warming leads to drier soil in warm regions

Middle to high latitudes

Positive correlation: warming leads to wetter soil in cold regions

Correlation of NPP with air temperature

Low latitudes

Negative correlation: NPP decreases with warming because of soil desiccation

Middle to high latitudes

Positive correlation: NPP increases with warming because of more favorable climate

Biogeophysical vs. biogeochemical interactions

Brovkin et al. (2004) Global Change Biology 10:1253-1266

Future land cover change

Biogeochemical

- A2 large warming; widespread deforestation
- B1 weak warming; less tropical deforestation, temperate reforestation

Biogeophysical A2 - cooling with widespread cropland

B1 - warming with temperate reforestation

0.5

0.25

0.1

-0.1

-0.25

-0.5

Net effect similar

A2 - BGC warming offsets BGP cooling

B1 - moderate BGP warming augments weak BGC warming

Sitch et al. (2005) GBC, 19, GB2013, doi:10.1029/2004GB002311

Ecology or climatology

Climatic Interpretation

Lamb (1977) Climate: Present, Past and Future. Volume 2, Climatic History and the Future

Lamb (1995) Climate, History and the Modern World

- Painted in the winter of 1565
- Records Bruegel's impression of severe winter

• Start of a long interest in Dutch winter landscapes that coincided with an extended period of colder than usual winters

Ecological Interpretation

Forman & Godron (1986) Landscape Ecology

Defines ecological concept of a landscape

- heterogeneity of landscape elements
- spatial scale
- movement across the landscape

