

Land Surface Models for Climate Models: Description and Application

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado

Advanced Study Program Summer Colloquium National Center for Atmospheric Research Boulder, CO June 2006

Role of land surface models in GCMs

- Provides the boundary conditions at the land-atmosphere interface
 - e.g. albedo, surface temperature, surface fluxes
- Partitions available energy at the surface into sensible and latent heat flux components
- Partitions rainfall into runoff and evaporation
 - Evaporation provides surface-atmosphere moisture flux
 - River runoff provides freshwater input to the oceans
- Provides the carbon fluxes at the surface (photosynthesis, respiration)
- Updates state variables which affect surface fluxes
 - e.g. snow cover, soil moisture, soil temperature, vegetation cover, leaf area index
- LSM cost is actually not that high (~10% of full coupled model)

Role of land surface models in GCMs

The land-surface model solves (at each timestep)

- Surface energy balance (and other energy balances, e.g. in canopy, snow, soil)
 - $S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G$
 - S^{\downarrow} , S^{\uparrow} are down(up)welling solar radiation
 - L^{\downarrow} , L^{\uparrow} are down(up)welling longwave radiation
 - λ is latent heat of vaporization, E is evaporation
 - H is sensible heat flux
 - G is ground heat flux
- Surface water balance (and other water balances such as snow and soil water)
 - $P = E_s + E_T + E_c + R_{surf} + R_{sub-surf} + \Delta SM / \Delta t$
 - P is rainfall
 - E_s is soil evaporation, E_T is transpiration, E_c is canopy evaporation
 - R_{surf} is surface runoff, R_{sub-surf} is sub-surface runoff
 - $\Delta SM / \Delta t$ is the change in soil moisture over a timestep
- Carbon balance (and plant and soil carbon pools)
 - NPP = GPP Ra = $(\Delta C_f + \Delta C_s + \Delta C_r) / \Delta t$
 - NEP = NPP Rh
 - NBP = NEP Combustion
 - NPP is net primary production, GPP is gross primary production
 - Ra is autotrophic (plant) respiration, Rh is heterotrophic (soil) respiration
 - ΔC_{f} , ΔC_{s} , ΔC_{r} are foliage, stem, and root carbon pools
 - NEP is net ecosystem production, NBP is net biome production
 - Combustion is carbon loss during fire

Surface energy balance

 $(S \downarrow - S^{\uparrow}) + \varepsilon L \downarrow = L^{\uparrow}[T_s] + H[T_s] + \lambda E[T_s] + G[T_s]$

$$L\uparrow = \varepsilon\sigma(T_s + 273.15)^4 + (1 - \varepsilon)L\downarrow$$

$$H = -\rho C_p \frac{(T_a - T_s)}{r_{aH}}$$

$$\lambda E = -\frac{\rho C_p}{\gamma} \frac{\left(e_a - e_*[T_s]\right)}{r_{aW}}$$

 $G = k \frac{\left(T_s - T_{soil}\right)}{\Delta z}$

Atmospheric forcing

- $S\downarrow$ incoming solar radiation
- $L\downarrow$ incoming longwave radiation
- T_a air temperature
- e_a vapor pressure

Surface properties

- S^{\uparrow} reflected solar radiation (albedo)
- ϵ emissivity
- raH aerodynamic resistance (roughness length)
- raW aerodynamic resistance (roughness length)
- T_{soil} soil temperature
- k thermal conductivity
- Δz soil depth

With atmospheric forcing and surface properties specified, solve for temperature T_s that balances the energy budget

Turbulent fluxes

Logarithmic wind profile in atmosphere near surface

Similar logarithmic profiles for temperature and vapor pressure

Turbulent fluxes

Bonan (2008) Ecological Climatology. 2nd edition (Cambridge Univ. Press)

Community Land Model

Hydrometeorology

• Land model for Community Climate System Model

• Developed by the CCSM Land Model Working Group in partnership with university and government laboratory collaborators

Bonan et al. (2002) J Climate 15:3123-3149 Oleson et al. (2004) NCAR/TN-461+STR Dickinson et al. (2006) J Climate 19:2302-2324 Energy fluxes: radiative transfer; turbulent fluxes (sensible, latent heat); heat storage in soil; snow melt

Hydrologic cycle: interception of water by leaves; infiltration and runoff; snow accumulation and melt; multi-layer soil water; partitioning of latent heat into evaporation of intercepted water, soil evaporation, and transpiration

Hvdroloav

Community Land Model

Dynamic vegetation

Bonan et al. (2003) Global Change Biology 9:1543-1566 Levis et al. (2004) NCAR/TN-459+IA Bonan & Levis (2006) J Climate 19:2290-2301

First-generation models

Simple energy balance model: $(1-r)S\downarrow + \varepsilon L\downarrow = L\uparrow[T_s] + H[T_s] + \lambda E[T_s]$ Prescribed surface albedo Bulk parameterizations of sensible and latent heat flux No influence of vegetation on surface fluxes Prescribed soil wetness factor β or calculated wetness from bucket model No soil heat storage

Green world vs desert world

Two climate model experiments

Wet - evapotranspiration not limited by soil water; vegetated planet Dry - no evapotranspiration; desert planet

Second-generation models

Vegetation and hydrologic cycle

Biosphere-Atmosphere Transfer Scheme (BATS)

Precipitation - Sun -

Dickinson et al. (1986) NCAR/TN-275+STR

Sellers et al. (1986) J Atmos Sci 43:505-531

Radiative transfer

Plant canopy

Leaf stomatal resistance

Stomatal Gas Exchange

Leaf boundary layer

Plant canopy

Soil temperature

Vertical Heat Transfer

Hydrologic cycle

Soil water - Richards equation

Land degradation

Land degradation

Climate model experiments

Degradation scenario - the vegetation type within the shaded area was changed to type 9 to represent degradation: less vegetation, lower LAI, smaller surface roughness length, higher albedo, sandy soil

Broadleaf evergreen tree

Broadleaf shrub/ground cover

Broadlea	f tree/	'ground	cover

Broadleaf shrub/bare soil

Type 1	Type 6	Type 8	Type 9
0.13	0.20	0.20	0.30
2.65	0.95	0.25	0.06
0.98	0.30	0.10	0.10
5.0	4.1	0.9	0.3
153	165	855	855
1.0	0.5	0.5	0.5
0.12	0.13	0.05	0.04
0.42	0.42	0.44	0.44
2.0	2.0	17.6	17.6
-0.086	-0.086	-0.035	-0.035
	Type 1 0.13 2.65 0.98 5.0 153 1.0 0.12 0.42 2.0 -0.086	Type 1 Type 6 0.13 0.20 2.65 0.95 0.98 0.30 5.0 4.1 153 165 1.0 0.5 0.12 0.13 0.42 0.42 2.0 2.0 -0.086 -0.086	Type 1Type 6Type 8 0.13 0.20 0.20 2.65 0.95 0.25 0.98 0.30 0.10 5.0 4.1 0.9 153 165 855 1.0 0.5 0.5 0.12 0.13 0.05 0.42 0.42 0.44 2.0 2.0 17.6 -0.086 -0.035

^a JAS mean value for a parameter with monthly variation.

^b Surface albedo was as calculated in the control ensemble.

^c Canopy capacity (mm) is given by $0.1 \times \text{leaf}$ area index.

Climate impacts

July-August-September precipitation differences (mm/day) due to degradation. Differences that are significant at the 95% confidence level are shaded and the degraded area is enclosed by a solid line.

July-August-September mean differences due to degradation. Values are means over the degraded area. D-C is the difference between degraded and control values.

	Control	D–C
Cloud cover	0.42	-0.06 (-14%)
$S_n (W m^{-2})$	241	-20** (-8%)
$L_n (W m^{-2})$	-90	-9 (+10%)
$R_n (W m^{-2})$	151	-29** (-19%)
$H (W m^{-2})$	102	-14^{**} (-14%)
$LE (W m^{-2})$	50	-15* (-30%)
$T_{s}(\mathbf{K})$	307.1	+0.2
Boundary layer θ_e (K)	343.4	-2.7
$P \text{ (mm day}^{-1}\text{)}$	2.1	-0.7* (-32%)
$E \text{ (mm day}^{-1}\text{)}$	1.7	-0.5* (-30%)
MC (mm day ⁻¹)	0.4	-0.2 (-50%)

* Significant at the 90% confidence level.

** Significant at the 95% confidence level.

Tropical deforestation

July 28, 2000

(NASA/GSFC/LaRC/JPL)

Settlement and deforestation surrounding Rio Branco, Brazil ($10^{\circ}S$, $68^{\circ}W$) in the Brazilian state of Acre, near the border with Bolivia. The large image covers an area of 333 km x 333 km.

(National Geographic Society)

Tropical deforestation

Warmer, drier tropical climate

Annual response to Amazonian deforestation in various climate model studies. $\Delta albedo$ and Δz_0 indicate the change in surface albedo and roughness due to deforestation (+, increase; -, decrease). ΔT , ΔP , and ΔET are the simulated changes in temperature, precipitation, and evapotranspiration. Shading denotes warmer, drier climate.

	Surface Change		Climate Change		
Study	∆albedo	Δz_0	ΔT	ΔP	ΔET
			(°C)	(mm)	(mm)
Dickinson and Henderson-Sellers (1988)	+	-	+3.0	0	-200
Lean and Warrilow (1989)	+	-	+2.4	-490	-310
Nobre <i>et al.</i> (1991)	+	-	+2.5	-643	-496
Dickinson and Kennedy (1992)	+	-	+0.6	-511	-256
Mylne and Rowntree (1992)	+	unchanged	-0.1	-335	-176
Henderson-Sellers et al. (1993)	+	-	+0.6	-588	-232
Lean and Rowntree (1993)	+	-	+2.1	-296	-201
Pitman <i>et al.</i> (1993)	+	-	+0.7	-603	-207
Polcher and Laval (1994a)	+	unchanged	+3.8	+394	-985
Polcher and Laval (1994b)	+	-	-0.1	-186	-128
Sud et al. (1996)	+	-	+2.0	-540	-445
McGuffie et al. (1995)	+	-	+0.3	-437	-231
Lean and Rowntree (1997)	+	-	+2.3	-157	-296
Hahmann and Dickinson (1997)	+	-	+1.0	-363	-149
Costa and Foley (2000)	+	-	+1.4	-266	-223

Third-generation models

Bonan (1995) JGR 100:2817-2831 Denning et al. (1995) Nature 376:240-242 Denning et al. (1996) Tellus 48B:521-542, 543-567

Leaf stomatal resistance

$$\frac{1}{r_s} = g_s = m \frac{A_n (h_s / 100)P}{c_s} + b$$

$$A_n = \min(w_c, w_j) - R_d$$

 w_c is the rubisco-limited rate of photosynthesis, w_j is light-limited rate allowed by RuBP regeneration

rubisco-limited rate is

$$w_c = \frac{V_{\max}(c_i - \Gamma_*)}{c_i + K_c (1 + O_i / K_o)}$$

RuBP regeneration-limited rate is

 $w_j = \frac{J(c_i - \Gamma_*)}{4(c_i + 2\Gamma_*)}$

Canopy resistance

CO2 fertilization and stomatal conductance

Leaf photosynthesis and conductance response to atmospheric CO₂ concentration, light-saturated

- (a) Dependence of leaf-scale photosynthesis for C_3 and C_4 vegetation on external CO_2 concentration
- (b) The C_3 photosynthesis curves for unadjusted (C and P) and down-regulated (PV) physiology
- (c) Dependence of stomatal conductance on CO_2 concentration for the unadjusted and down-regulated cases.

Photosynthesis increases and stomatal conductance decreases with higher atmospheric CO_2

CO_2 fertilization and stomatal conductance

 CO_2 fertilization (RP, RPV) reduces canopy conductance and increases temperature compared with radiative CO_2 (R)

Bounoua et al. (1999) J Climate 12:309-324

CO2 fertilization and stomatal conductance

TABLE 2. Summary of results from the six experiments described in test: C-control $(1 \times CO_2 \text{ for radiation and physiology})$; P $(1 \times CO_2 \text{ for radiation}, 2 \times CO_2$

1	1				
			Location		
-	Tropics	Midlatitudes	North latitudes		Global
Experiment	14.4°S–14.4°N	28.8–50.4°N	50.4–72.0°N	All land points	land + ocean
		Assimilatio	n (µmol m ⁻² s ⁻¹)		
С	6.04	1.77	1.67	2.65	
Р	7.96 (31.7)	2.62 (48.3)	2.26 (35.6)	3.59 (35.3)	GIODAI CIIMATE:
	6.87 (13.8)	1.96 (10.8)	1.76 (6.0)	2.93 (10.6)	Reduced conductance
R RD	0.08 (0.0) 8 10 (35 1)	1.72(-2.5) 2.53(43.4)	1.03(-2.0) 2.25(35.0)	2.65 (0.0)	
RPV	6.71(11.0)	2.02(14.1)	1.81(8.9)	2.94 (11.0)	Reduced evaporation
		Canopy con	ductance (mm s^{-1})		Reduced precipitation
С	2 79	0.79	0.92	1 21	Reduced precipitation
P	2.06(-26.1)	0.61(-23.4)	0.68(-25.9)	0.90(-25.1)	Warmer temperature
PV	1.82 (-34.8)	0.49 (-38.3)	0.59 (-35.7)	0.78 (-35.2)	ľ
R	2.81 (0.6)	0.79 (-0.9)	0.91 (-0.6)	1.21 (0.2)	
RP	2.12 (-24.1)	0.61 (-23.8)	0.69 (-24.5)	0.92 (-23.8)	
RPV	1.79 (-35.9)	0.51 (-35.9)	0.62 (-32.4)	0.79 (-34.1)	
		Evapotrans	piration (W m ⁻²)		
С	100.8	49.6	38.6	58.9	96.0
Р	96.7 (-4.0)	49.3 (-0.6)	37.7 (-2.2)	57.6 (-2.3)	95.8 (-0.2)
PV	96.5 (-4.2)	48.1 (-3.1)	37.0 (-4.1)	56.9 (-3.5)	96.0 (0.1)
K DD	105.9 (5.1)	52.3 (5.4)	41.2 (6.8)	62.3 (5.8)	100.1 (4.2)
RP	102.6 (1.9)	51.5(3.8) 50.4(1.6)	39.9 (3.4)	60.9 (3.3) 50 1 (0.2)	99.9 (4.0)
KP V	100.0 (-0.8)	50.4 (1.0)	39.0 (1.0)	59.1 (0.5)	99.1 (5.5)
		Precipitat	10n (mm day $^{-1}$)		
С	4.36	2.70	2.35	2.90	3.29
Р	4.34(-0.4)	2.69(-0.2)	2.33(-1.1)	2.89(-0.3)	3.28(-0.2)
PV	4.35(-0.2)	2.78 (3.0)	2.34(-0.6)	2.94 (1.3)	3.29 (0.1)
R D D	4.58 (5.0)	2.91 (7.7)	2.34 (7.8)	3.09 (6.5)	3.43 (4.2) 3.42 (4.0)
RPV	4.58 (5.0)	2.79 (3.1)	2.43 (3.4)	2.99 (3.0)	3.40 (3.3)
14 1		Surface air	temperature (°C)	2000	
C	20.1			10.4	19.5
P	28.1 28.5 (0.4)	17.4 17.7 (0.3)	4.0 5.1 (0.3)	19.0	18.7 (0.1)
PV	28.8 (0.7)	17.9(0.5)	5.9 (1.1)	20.2(0.7)	18.9 (0.3)
R	29.8 (1.7)	20.0 (2.6)	8.8 (4.0)	22.2 (2.6)	20.4 (1.9)
RP	30.2 (2.1)	20.3 (2.9)	8.7 (3.9)	22.4 (2.8)	20.5 (1.9)
RPV	30.6 (2.6)	20.0 (2.6)	8.1 (3.3)	22.2 (2.7)	20.4 (1.8)

Fourth-generation of models

Dynamic vegetation

Foley et al. (1996) GBC 10:603-628 Levis et al. (1999) JGR 104D:31191-31198 Levis et al. (2000) J Climate 13:1313-1325 Cox et al. (2000) Nature 408:184-187 **ATMOSPHERE**

T. u.v. a. P

Greening of a land surface model

Bonan et al. (2003) Global Change Biology 9:1543-1566

Model validation - tower fluxes

Boreal Ecosystem Atmosphere Study (BOREAS)

Simulated Leaf Area Index

Model validation - global net primary production

Annual net primary production (g $C m^{-2} yr^{-1}$)

Vegetation Type	Simulated	Observed
Tropical broadleaf evergreen forest	1278	1250±900
Tropical broadleaf deciduous forest	886	825±475
Temperate broadleaf deciduous forest	579	600±325
Boreal deciduous forest	346	425±200
Boreal needleleaf evergreen forest	385	325±200
Temperate/boreal mixed forest	576	525±275
Grassland	175	575±475
Tundra	159	150±200

Vegetation dynamics

Bonan et al. (2003) Global Change Biology 9:1543-1566

Greening of North Africa

Climate 6000 years BP

Increased Northern Hemisphere summer solar radiation

Strengthened African monsoon

Wetter North African climate allowed vegetation to

expand

Kutzbach et al. (1996) Nature 384:623-626

Greening of North Africa

-50-45-40-35-30-25-20-15-10-5 0 5 10 15 20 25 30 35 40 45 50

Precipitation Change From Present Day

<u>Dominant forcing</u> Increase in evaporation Decrease in soil albedo

Levis et al. (2004) Climate Dynamics 23:791-802

Effect of boreal forests on climate

Vegetation masking of snow albedo

Robinson & Kukla (1985) J Climate Appl Meteor 24:402-411

Tree-covered land has a lower albedo during winter than snow-covered land

Colorado Rocky Mountains

Effect of boreal forests on climate

Climate model simulations show boreal forest warms climate

Forest warms climate by decreasing surface albedo Warming is greatest in spring but is year-round Warming extends south of boreal forest (about 45°N)

Effect of boreal forests on climate

Boreal forest expansion with $2 \times CO_2$ warms climate

Dominant forcing

Decrease in albedo [Carbon storage could mitigate warming]

Additional temperature change with vegetation

Mean annual temperature $(2 \times CO_2)$

Land cover change as a climate forcing

Data taken from: Ramankutty and Foley 1999

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Land cover change as a climate forcing

Future IPCC SRES Land Cover Scenarios for NCAR LSM/PCM

b) B1 2050 land cover

c) B1 2100 land cover

d) A2 2050 land cover

e) A2 2100 and cover

Forcing arises from changes in

Hydrologic cycle

Community composition Leaf area Height [surface roughness] \$ Surface albedo Turbulent fluxes

Also alters carbon pools and fluxes, but most studies of land cover change have considered only biogeophysical processes

Land use climate forcing

Dominant forcing Brazil – albedo, ET U.S. – albedo Asia – albedo

PCM/NCAR LSM transient climate simulations with changing land cover. Figures show the effect of land cover on temperature

(SRES land cover + SRES atmospheric forcing) - SRES atmospheric forcing

Carbon cycle feedback

Three climate model simulations to isolate the climate/carbon-cycle feedbacks

- Prescribed CO2 and fixed vegetation (a 'standard' GCM climate change simulation)
- Interactive CO_2 and dynamic vegetation but no effect of CO_2 on climate (no climate/carbon cycle feedback)
- Fully coupled climate/carbon-cycle simulation (climate/carbon cycle feedback)

