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•

 

Provides the boundary conditions at the land-atmosphere interface
–

 

e.g. albedo, surface temperature, surface fluxes
•

 

Partitions available energy at the surface into sensible and latent heat flux components
•

 

Partitions rainfall into runoff and evaporation
–

 

Evaporation provides surface-atmosphere moisture flux
–

 

River runoff provides freshwater input to the oceans
•

 

Provides the carbon fluxes at the surface (photosynthesis, respiration)
•

 

Updates state variables which affect surface fluxes
–

 

e.g. snow cover, soil moisture, soil temperature, vegetation cover, leaf area index

•

 

LSM cost is actually not that high ( ~10% of full coupled model)

Role of land surface models in GCMs



Role of land surface models in GCMs
The land-surface model solves (at each timestep)

–

 

Surface energy balance

 

(and other energy balances, e.g. in canopy, snow, soil)
•

 

S↓

 

+ L↓

 

= S↑

 

+ L↑

 

+ λE + H + G 
–

 

S↓, S↑

 

are down(up)welling solar radiation 
–

 

L↓

 

, L↑

 

are down(up)welling longwave radiation
–

 

λ

 

is latent heat of vaporization, E is evaporation
–

 

H is sensible heat flux
–

 

G is ground heat flux

–

 

Surface water balance

 

(and other water balances such as snow and soil water)
•

 

P  =  ES

 

+  ET

 

+  EC

 

+ RSurf

 

+  RSub-Surf

 

+  ∆SM / ∆t
–

 

P  is rainfall
–

 

ES

 

is soil evaporation, ET

 

is transpiration, EC

 

is canopy evaporation
–

 

RSurf

 

is surface runoff, RSub-Surf

 

is sub-surface runoff
–

 

∆SM / ∆t is  the change in soil moisture over a timestep

–

 

Carbon balance

 

(and plant and soil carbon pools)
•

 

NPP  =  GPP –

 

Ra = (∆Cf

 

+ ∆Cs

 

+ ∆Cr

 

) / ∆t
•

 

NEP = NPP –

 

Rh 
•

 

NBP = NEP -

 

Combustion
–

 

NPP  is net primary production, GPP is gross primary production
–

 

Ra is autotrophic (plant) respiration, Rh is heterotrophic (soil) respiration
–

 

∆Cf

 

, ∆Cs

 

, ∆Cr

 

are foliage, stem, and root carbon pools
–

 

NEP is net ecosystem production, NBP is net biome production
–

 

Combustion is carbon loss during fire



Surface energy balance

(S↓-S↑) + εL↓

 

= L↑[Ts

 

] + H[Ts

 

] + λE[Ts

 

] + G[Ts

 

]

With atmospheric forcing and surface properties specified, solve

 
for temperature Ts

 

that balances the energy budget

Surface energy balance and surface temperature

Atmospheric forcing
S↓

 

-

 

incoming solar radiation
L↓

 

-

 

incoming longwave radiation
Ta

 

–

 

air temperature
ea

 

– vapor pressure

Surface properties
S↑

 

-

 

reflected solar radiation (albedo)
ε

 

-

 

emissivity
raH

 

–

 

aerodynamic resistance (roughness length)
raW

 

–

 

aerodynamic resistance (roughness length)
Tsoil

 

–

 

soil temperature
k –

 

thermal conductivity
Δz –

 

soil depth
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Turbulent fluxes
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Community Land Model

Community Land Model

• Land model for Community Climate System Model
•

 

Developed by the CCSM Land Model Working 
Group in partnership with university and 
government laboratory collaborators

Energy fluxes: radiative transfer; turbulent fluxes 
(sensible, latent heat); heat storage in soil; snow 
melt

Hydrologic cycle: interception of water by leaves; 
infiltration and runoff; snow accumulation and melt; 
multi-layer soil water; partitioning of latent heat 
into evaporation of intercepted water, soil 
evaporation, and transpiration

Hydrometeorology

Bonan et al. (2002) J Climate 15:3123-3149
Oleson

 

et al. (2004) NCAR/TN-461+STR
Dickinson et al. (2006) J Climate 19:2302-2324



Community Land Model

Vegetation 
dynamics
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Water 
depth, 
w

Critical 
depth, 
w0

Runoff
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Sensible heat

Ta

Ts

Latent heat

ra

ea

e* (Ts )

ra /β

E = β

 

Ep
β

 

= 1         for w≥w0
β

 

= w/w0 for w<w0

First-generation models

Simple energy balance model: (1-r)S↓

 

+ εL↓

 

= L↑[Ts

 

] + H[Ts

 

] + λE[Ts

 

]
Prescribed surface albedo
Bulk parameterizations of sensible and latent heat flux
No influence of vegetation on surface fluxes
Prescribed soil wetness factor β

 

or calculated wetness from bucket model
No soil heat storage

Manabe

 

(1969) Monthly Weather Review 97:739-774
Williamson et al. (1987) NCAR/TN-285+STR
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Shukla

 

& Mintz

 

(1982) Science 215:1498-1501

Green world vs
 

desert world
Two climate model experiments
Wet –

 

evapotranspiration not limited by soil water; vegetated planet
Dry –

 

no evapotranspiration; desert planet

July surface temperature (°C)

Wet soil

Dry soil

July precipitation (mm/day)

Wet soil

Dry soil

Dry soil warmer than wet soil Dry soil has less precipitation



Second-generation models

Vegetation and hydrologic cycle

Dickinson et al. (1986) NCAR/TN-275+STR Sellers et al. (1986) J Atmos

 

Sci

 

43:505-531

Biosphere-Atmosphere Transfer Scheme (BATS) Simple Biosphere Model (SiB)



Radiative transfer
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Photosynthetically
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Plant canopy
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Soil temperature
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Soil water –
 

Richards equation
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Charney

 

(1975) QJRMS 101:193-202
Charney

 

et al. (1975) Science 187:434-435

Land degradation

Dead vegetation in drought-stricken area, 
Sol-Dior area, Senegal (FAO, Ch. Errath)

Goat seeks food in the sparsely 
vegetated Sahel of Africa (US AID) 

Climate feedback
Overgrazing

Less Rainfall

Decreased Clouds
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Decreased Net 
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Degradation scenario -

 

the vegetation type within the 
shaded area was changed to type 9 to represent

 

 
degradation: less vegetation, lower LAI, smaller 
surface roughness length, higher albedo, sandy soil

Broadleaf evergreen tree

Broadleaf tree/ground cover

Broadleaf shrub/ground cover

Broadleaf shrub/bare soil

Climate model experiments

Clark et al. (2001) J Climate 14:1809-1822

Land degradation



July-August-September precipitation differences

 

 
(mm/day) due to degradation. Differences that are 
significant at the 95% confidence level are shaded 
and the degraded area is enclosed by a solid line. 

Clark et al. (2001) J Climate 14:1809-1822

Climate impacts

July-August-September mean differences due 
to degradation. Values are means over the 
degraded area. D–C is the difference between 
degraded and control values. 

Land degradation



(NASA/GSFC/LaRC/JPL)

Settlement and deforestation surrounding Rio 
Branco, Brazil (10°S, 68°W) in the Brazilian state 
of Acre, near the border with Bolivia. The large 
image covers an area of 333 km x 333 km. 

Tropical deforestation

(National Geographic Society)



 Surface Change  Climate Change 

Study Δalbedo Δz0  ΔT 

(°C) 

ΔP 

(mm) 

ΔET 

(mm) 

Dickinson and Henderson-Sellers (1988) + -  +3.0 0 -200 

Lean and Warrilow (1989) + -  +2.4 -490 -310 

Nobre et al. (1991) + -  +2.5 -643 -496 

Dickinson and Kennedy (1992) + -  +0.6 -511 -256 

Mylne and Rowntree (1992) + unchanged  -0.1 -335 -176 

Henderson-Sellers et al. (1993) + -  +0.6 -588 -232 

Lean and Rowntree (1993) + -  +2.1 -296 -201 

Pitman et al. (1993) + -  +0.7 -603 -207 

Polcher and Laval (1994a) + unchanged  +3.8 +394 -985 

Polcher and Laval (1994b) + -  -0.1 -186 -128 

Sud et al. (1996) + -  +2.0 -540 -445 

McGuffie et al. (1995) + -  +0.3 -437 -231 

Lean and Rowntree (1997) + -  +2.3 -157 -296 

Hahmann and Dickinson (1997) + -  +1.0 -363 -149 

Costa and Foley (2000) + -  +1.4 -266 -223 

 

Annual response to Amazonian deforestation in various climate model studies. 
Δalbedo and Δz0

 

indicate the change in surface albedo and roughness due to 
deforestation (+, increase; -, decrease). ΔT, ΔP, and ΔET are the simulated 
changes in temperature, precipitation, and evapotranspiration. Shading denotes 
warmer, drier climate. 

Warmer, drier tropical climate

Tropical deforestation
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Bonan (1995) JGR 100:2817-2831
Denning et al. (1995) Nature 376:240-242
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48B:521-542, 543-567 
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Leaf photosynthesis and conductance response to
atmospheric CO2

 

concentration, light-saturated

(a)

 

Dependence of leaf-scale photosynthesis for C3

 

and C4

 

vegetation on external CO2

 

concentration
(b)

 

The C3

 

photosynthesis curves for unadjusted (C 
and P) and down-regulated (PV) physiology

(c

 

)

 

Dependence of

 

stomatal

 

conductance on CO2

 

concentration for the unadjusted and down-

 
regulated cases. 

Bounoua et al. (1999) J Climate 12:309-324

CO2

 

fertilization and stomatal conductance

Photosynthesis increases and stomatal

 
conductance decreases with higher 
atmospheric CO2



Amazonian evergreen forest, 
diurnal cycle January

Canadian evergreen forest, 
diurnal cycle July

Bounoua et al. (1999) J Climate 12:309-324

CO2

 

fertilization and stomatal conductance
CO2

 

fertilization (RP, RPV) reduces canopy conductance and increases temperature 
compared with radiative CO2

 

(R)



CO2

 

fertilization and stomatal conductance

Bounoua et al. (1999) J Climate 12:309-324

Global climate:
Reduced conductance
Reduced evaporation
Reduced precipitation
Warmer temperature



Fourth-generation of models

Vegetation 
dynamics
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BIOGEOPHYSICS

20-minutes YearlyDaily 

VEGETATION DYNAMICS

summer
green rain green

PHENOLOGY
daily 
leaf 
area 
index

canopy physiology
photosynthesis

(GPP)
stomatal

conductance
maximum 
leaf area 

index

plant functional type (presence, extent)
height
plant carbon
litter and soil carbon

canopy physics
energy balance

temperature
water

balance
aero-

dynamics
radiative
transfer

T, u,v, q, P 
S↓, L↓, (CO2 )

λ⋅E, H, τx ,τy , 
S↑, L↑, (CO2 )
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soil/snow/ice physics
energy
balance

water
balance

temperature

BIOGEOCHEMISTRY

heterotrophic respiration (RH )
litter carbon soil carbon

autotrophic respiration (RA )
maintenance
•foliage,stem,root

growth
net primary 
production

GPP-RA

DAILY STATISTICS
•10-day mean temperature 
•10-day mean photosynthesis
•growing degree-day accumulation

ANNUAL STATISTICS

•minimum monthly temperature (20-year mean)
•growing degree-days above 5°C (20-year mean)
•precipitation
•growing degree-days above heat stress

GPP        
soil water
leaf temperature
soil temperature

•leaves
•stems
•roots
•seeds

allocation turnover
•leaf litter
•sapwood to
heartwood
•root litter

mortality
•growth efficiency
bioclimatology
•frost tolerance
•heat stress

ecophysiology

•fire season length
•net primary production
•GPP and potential GPP

bioclimatology

phenology

fire probability

•potential rate
•canopy gap
bioclimatology
•frost tolerance
•heat stress
•winter chilling
•growing season warmth
•low precipitation

establishment

soil organic 
matter
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•moisture
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occurrence

fire resistance
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Bonan et al. (2003) Global Change Biology 9:1543-1566

Greening of a land surface model



Bonan et al. (1997) J Geophys

 

Res

 

102D:29065-29075

Model validation –
 

tower fluxes

Model

Tower
Observations

Boreal Ecosystem Atmosphere Study (BOREAS)



Simulated Leaf Area Index

Three types of phenology
• Evergreen
• Raingreen
• Summergreen

Bonan et al. (2003) Global Change Biology 9:1543-1566



 

Vegetation Type Simulated  Observed 

Tropical broadleaf evergreen forest 1278 1250±900 

Tropical broadleaf deciduous forest 886 825±475 

Temperate broadleaf deciduous forest 579 600±325 

Boreal deciduous forest 346 425±200 

Boreal needleleaf evergreen forest 385 325±200 

Temperate/boreal mixed forest 576 525±275 

Grassland 175 575±475 

Tundra 159 150±200 
 

Annual net primary production (g C m-2

 

yr-1)

Bonan et al. (2003) Global Change Biology 9:1543-1566

Model validation –
 

global net primary production



Vegetation dynamics

Boreal forest succession Global biogeography

Bonan et al. (2003) Global Change Biology 9:1543-1566



Climate 6000 years BP
Increased Northern Hemisphere summer solar radiation 
Strengthened African monsoon
Wetter North African climate allowed vegetation to 
expand

Greening of North Africa

Kutzbach

 

et al. (1996) Nature 384:623-626

Climate model experiments show:
• Strengthened monsoon due to radiative forcing
•

 

Vegetation forcing similar in magnitude to 
radiative forcing

Two climate model experiments
Desert North Africa
Green North Africa



6kaBP DynVeg Soil Texture –

 

0 kaBP

Precipitation Change From Present Day

Dominant forcing
Increase in evaporation
Decrease in soil albedo

Greening of North Africa
Present Day Biogeography

(percent of grid cell)

Orbital geometry

Vegetation and soilAlbedo

Levis et al. (2004) Climate Dynamics 23:791-802



Vegetation masking of snow albedo
Maximum satellite-derived surface albedo

 

during winter

Robinson & Kukla (1985) J Climate Appl

 

Meteor 24:402-411

Tree-covered land has a lower albedo

 
during winter than snow-covered land

Effect of boreal forests on climate

Colorado Rocky Mountains



Effect of boreal forests on climate

Climate Model Simulations: Forested - Deforested
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Bonan et al. (1992) Nature 359:716-718

Climate model simulations show boreal forest warms climate

Forest warms climate by decreasing surface albedo
Warming is greatest in spring but is year-round
Warming extends south of boreal forest (about 45°N)



Boreal forest expansion with 
2×CO2

 

warms climate

Bonan & Levis, unpublished

Mean annual temperature (2×CO2

 

)

Additional temperature change with vegetation

Dominant forcing
Decrease in albedo
[Carbon storage could mitigate warming]

Effect of boreal forests on climate



Land cover change as a climate forcing



Future IPCC SRES Land Cover Scenarios for NCAR LSM/PCM

Land cover change as a climate forcing

Feddema et al. (2005) Science 310:1674-1678

Forcing arises from 
changes in

Community composition
Leaf area
Height [surface roughness]

↓
Surface albedo
Turbulent fluxes
Hydrologic cycle

Also alters carbon pools 
and fluxes, but most 
studies of land cover 
change have considered 
only biogeophysical 
processes



SRES B1 SRES A2

2100

2050

PCM/NCAR LSM transient climate simulations with changing land cover. Figures show the 
effect of land cover on temperature 

(SRES land cover + SRES atmospheric forcing)  -

 

SRES atmospheric forcing

Land use climate forcing

Dominant forcing
Brazil –

 

albedo, ET
U.S. –

 

albedo
Asia -

 

albedo

Feddema et al. (2005) Science 310:1674-1678



Carbon cycle feedback
Three climate model simulations to isolate the climate/carbon-cycle feedbacks
• Prescribed CO2

 

and fixed vegetation (a 'standard' GCM climate change simulation)
• Interactive CO2

 

and dynamic vegetation but no effect of CO2

 

on climate (no climate/carbon cycle feedback)
• Fully coupled climate/carbon-cycle simulation (climate/carbon cycle feedback)

Prescribed CO2

 

and fixed vegetation
Interactive CO2

 

and vegetation, no climate change
Fully coupled

Carbon budgets for the fully coupled simulation 

Effect of climate/carbon-cycle feedbacks 
on CO2

 

increase and global warming 

Cox et al. (2000) Nature 408:184-187
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