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Biogeophysics

Community Land Model

Community Land Model

• Land model for Community Climate System Model
•

 

Developed by the CCSM Land Model Working 
Group in partnership with university and 
government laboratory collaborators

Energy fluxes: radiative transfer; turbulent fluxes 
(sensible, latent heat); heat storage in soil; snow 
melt

Hydrologic cycle: interception of water by leaves; 
infiltration and runoff; snow accumulation and melt; 
multi-layer soil water; partitioning of latent heat 
into evaporation of intercepted water, soil 
evaporation, and transpiration

Hydrometeorology

Bonan et al. (2002) J Climate 15:3123-3149
Oleson

 

et al. (2004) NCAR/TN-461+STR
Dickinson et al. (2006) J Climate 19:2302-2324
Oleson

 

et al. (2008) JGR-Biogeosciences, in press
Stöckli

 

et al. (2008) JGR-Biogeosciences, in press



Community Land Model

Vegetation 
dynamics
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Bonan et al. (2003) Global Change Biology 9:1543-1566
Levis et al. (2004) NCAR/TN-459+IA



Flux tower observations,
tropical evergreen forest, 
Brazil

Stöckli

 

et al. (2008) JGR-

 

Biogeosciences, in press

Hydrometeorology



Soil moisture anomaly

Observations
CLM3
HYD

Oleson

 

et al. (2008) JGR-Biogeosciences, in press

Hydrologic cycle



Oleson

 

et al. (2008) JGR-Biogeosciences, in press

Global vegetation



Ecosystem Model-Data Intercomparison

 

(EMDI) 
compilation of observations

•

 

Class A and Class B observations used
•

 

NPP extracted for each model grid cell 
corresponding to a measurement location

Annual net primary production

Randerson

 

et al., BGCWG, unpublished



CN CASA' 
Experiment Latitude 

(°N) 
CO2 
initial 

CO2 
final Initial 

NPP 
final 
NPP Beta Initial 

NPP 
final 
NPP Beta 

DukeFACE 35.6 283.2 364.1 661 733 0.43 1091 1241 0.55 
AspenFACE 45.4 283.2 364.1 358 397 0.43 524 595 0.54 
ORNL-FACE 35.5 283.2 364.1 828 901 0.35 1090 1248 0.58 

POP-EUROFACE 42.2 283.2 364.1 235 253 0.30 397 453 0.56 
Mean:      0.38   0.56 

Observed mean β: 0.60 Observed NPP increase (376 -> 550ppm): 23%
CN model mean β: 0.38 CN predicted (376 -> 550ppm): 14%

CASA′

 

model mean β: 0.56 CASA′

 

predicted (376 -> 550ppm): 21%
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Comparison with FACE experiments

Randerson

 

et al., BGCWG, unpublished



Anthropogenic land cover change

Agroecosytems
Albedo
Bowen ratio
Infiltration/runoff
Soil water holding capacity
Atmospheric CO2
Nitrogen cycle
Dust

Land cover change occurs 
from human uses of land



Summer Surface Air Temperature Difference (Present Day –

 

Natural Vegetation)

LSM Biome Dataset PFT Dataset
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Four paired climate 
simulations with CAM2 
using two land surface 
models

• NCAR LSM
• CLM2

and two surface datasets

•

 

Biome dataset without 
subgrid heterogeneity
•

 

Dataset of plant 
functional types with 
subgrid heterogeneity

Oleson

 

et al. (2004) Climate Dynamics 23:117-132

Conclusion
Magnitude of cooling 
associated with 
croplands is sensitive 
to surface datasets 
and model physics

U.S. deforestation



Sensitivity to atmospheric model

CAM3/CLM3.5

Present-day -

 

potential vegetation

CAM3.5/CLM3.5



Future IPCC SRES Land Cover Scenarios for NCAR LSM/PCM

Future land cover change as a climate forcing

Feddema

 

et al. (2005) Science 310:1674-1678 

A2 –

 

Widespread 
agricultural expansion with 
most land suitable for 
agriculture used for farming 
by 2100 to support a large 
global population

B1 -

 

Loss of farmland and 
net reforestation due to 
declining global population 
and farm abandonment in the 
latter part of the century



SRES B1 SRES A2

2100

2050

PCM/NCAR LSM transient climate simulations with changing land cover. Figures show the 
effect of land cover on temperature 

(SRES land cover + SRES atmospheric forcing)  -

 

SRES atmospheric forcing

Dominant forcing
Brazil –

 

albedo, ET
U.S. –

 

albedo
Asia -

 

albedo

Feddema

 

et al. (2005) Science 310:1674-1678 

Future land cover change as a climate forcing



Effect of climate change on carbon cycle

Land
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Distribution at 2100 of cumulative 
anthropogenic carbon emissions

The amount of carbon stored in the 
atmosphere increases in each model 
compared with the comparable simulation 
without climate-carbon cycle feedback, 
while the land carbon storage decreases. 

Climate-carbon cycle feedback
•

 

All models have a positive climate-carbon 
cycle feedback
•

 

The difference between fully coupled carbon 
cycle climate simulations and uncoupled 
simulations (CO2

 

has no radiative effect) 
ranges from 20 ppm

 

to 200 ppm

C4MIP –
 

Climate and carbon cycle

Friedlingstein

 

et al. (2006) J Climate 19:3337–3353 

Coupled carbon cycle-climate model
Without carbon cycle-climate feedback
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emission in air, 
ocean, and land up to 2000 (open 
symbols) and to 2100 (closed 
symbols) for eleven carbon cycle 
climate model simulations

All models show that the efficiency 
of the carbon cycle to store 
anthropogenic CO2

 

in ocean and land 
decreases in the future 

Denman et al. (2007) in Climate Change 2007: The Physical Science Basis, 
Solomon et al., Eds., 499-587 

C4MIP –
 

Climate and carbon cycle



Gray lines show archived results from 
eleven previous studies

Thick solid line is for experiments with 
preindustrial N deposition

Thick dashed line for anthropogenic N 
deposition

Panel A: Atmospheric CO2

 

(Ca) of 
884 ppm

 

by 2100, radiatively-

 
uncoupled 

Panel B: Radiative coupling reduces 
Ca by 6 ppm, with a further 
reduction of 27 ppm

 

due to 
anthropogenic N deposition 

Ca

 

from uncoupled experiments ΔCa

 

due to radiative coupling

Land biosphere response to 
increasing atmospheric CO2

Land biosphere response 
to increasing temperature 

Climate, carbon, and nitrogen cycle

Thornton et al., submitted



Sitch

 

et al. (2005) GBC, 19, GB2013, doi:10.1029/2004GB002311 

Future land cover change

A2 –

 

Widespread agricultural 
expansion with most land suitable 
for agriculture used for farming 
by 2100 to support a large global 
population

B1 -

 

Loss of farmland and net 
reforestation due to declining 
global population and farm 
abandonment in the latter part of 
the century



Sitch

 

et al. (2005) GBC, 19, GB2013, doi:10.1029/2004GB002311 

A2 biogeophysical

A2 biogeochemical

A2 net

B1 biogeophysical

B1 biogeochemical

B1 net

Biogeochemical
A2 –

 

large warming; widespread 
deforestation
B1 –

 

weak warming; less tropical 
deforestation, temperate 
reforestation

Net effect similar
A2 –

 

BGC warming offsets BGP 
cooling
B1 –

 

moderate BGP warming 
augments weak BGC warming

Biogeophysical
A2 –

 

cooling with widespread 
cropland
B1 –

 

warming with temperate 
reforestation

Future land cover change



Permissible anthropogenic CO2

 

emissions to achieve a targeted 
atmospheric CO2

 

are derived 
from specified atmospheric CO2

 

concentration and simulated 
land and ocean carbon fluxes. 

The positive carbon cycle-

 
climate feedback reduces the 
ability of the biosphere to store 
anthropogenic carbon emissions 
and necessitates reductions in 
emissions to achieve 
stabilization goals. 

The CO2

 

fertilization effect is 
particularly important as this 
increases the terrestrial carbon 
sink and allows high 
anthropogenic emissions. 

Matthews (2006) Tellus

 

58B:591-602 

Permissible anthropogenic CO2

 

emissions



Schaeffer et al. (2006) GBC, 20, GB2020, doi:10.1029/2005GB002581 

Reforestation might be chosen as an option for the 
enhancement of terrestrial carbon sequestration or 
biofuel

 

plantations as a substitute for fossil fuels

Land management policies to mitigate climate change

Excess agricultural land converted 
to carbon storage or biofuels

2100 land management, IPCC A1b scenario

Green = carbon plantations
Green + red = biofuel

 

plantations



Carbon plantations and biofuel

 

plantations reduce atmospheric 
CO2

 

, leading to cooling.

Carbon plantations have lower 
albedo than biofuels, leading to 
warming

Carbon plantations (IM-C) and biofuels

 

(IM-bio) 
reduce CO2

 

by 70-80 ppm
Natural vegetation (IM-nat) and carbon plantations 
(IM-C) have lower albedo than biofuels

 

(IM-bio)

Schaeffer et al. (2006) GBC, 20, GB2020, doi:10.1029/2005GB002581 

Land management policies to mitigate climate change



Eddy covariance flux tower
(courtesy Dennis Baldocchi) 

Hubbard Brook 
Ecosystem Study

Environmental Monitoring Experimental Manipulation

Soil warming, Harvard Forest

CO2

 

enrichment, Duke Forest

Planetary energetics
Planetary ecology
Planetary metabolism 

How to integrate ecological studies with earth system models?



Ecology or climatology

Climatic Interpretation

Lamb (1977) Climate: Present, Past and Future. 
Volume 2, Climatic History and the Future

Lamb (1995) Climate, History and the Modern 
World 

• Painted in the winter of 1565
• Records Bruegel’s

 

impression of severe winter
•

 

Start of a long interest in Dutch winter 
landscapes that coincided with an extended 
period of colder than usual winters

Ecological Interpretation

Forman & Godron

 

(1986) Landscape Ecology

Defines ecological concept of a landscape
• heterogeneity of landscape elements
• spatial scale
• movement across the landscape

Pieter Bruegel

 

the Elder’s “Hunters in the Snow”

Bonan (2008) Ecological Climatology. 2nd edition (Cambridge Univ. Press)
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