Climate Forcing and Feedback from the Terrestrial Carbon Cycle and Land Cover Change

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado

19 January 2010 Department of Environmental Sciences University of Virginia Charlottesville, Virginia

Evolution of climate science

Climate of the 21st century

Multi-model mean surface warming (relative to 1980– 1999) for the scenarios A2, A1B and B1

Multi-model mean warming and uncertainty for 2090 to 2099 relative to 1980 to 1999:

A2: $+3.4$ °C (2.0°C to 5.4°C) A1B: +2.8°C (1.7°C to 4.4°C) B1: +1.8°C (1.1°Cto 2.9°C)

Meehl et al. (2007) in Climate Change 2007: The Physical Science Basis, Solomon et al., Eds., 747-845

For 5th assessment report

- o Land cover change and the carbon cycle as climate forcings and feedbacks
- o Can ecosystems be managed to mitigate climate change?

Forests and climate change

Multiple competing influences of ecosystems

Bonan (2008) Science 320:1444-1449

Credit: Nicolle Rager Fuller, National Science Foundation

Ecosystems and climate policy

Boreal forest – menace to society – no

ed Torest intendee to society the Temperate forest – reforestation and afforestation?
need to promote conservation

Tropical rainforest – planetary savior – promote avoided deforestation, reforestation, or afforestation

Biofuel plantations to lower albedo and reduce atmospheric $CO₂$

Outline of talk

- 1. Introduction
- 2. Representing ecosystems in climate models
- 3. Carbon cycle and climate Concentration-carbon feedback $(CO₂$ fertilization) Climate–carbon feedback (temperature) Nitrogen cycle
- 4. Land use and land cover change

4a. Biogeochemical Land use carbon flux

4b. Biogeophysical Albedo and evapotranspiration

5. Climate change mitigation

The Earth system 2. Models

(IPCC 2007)

Climate models use mathematical formulas to simulate the **physical**, **chemical**, and **biological** processes that drive Earth's climate

A typical climate model consists of coupled models of the **atmosphere**, **ocean**, **sea ice**, and **land**

Land is represented by its ecosystems, watersheds, people, and socioeconomic drivers of environmental change

The model provides a comprehensive understanding of the processes by which people and ecosystems affect, adapt to, and mitigate global change

The Community Land Model

Fluxes of energy, water, and carbon and the dynamical processes that alter these fluxes

Oleson et al. (2004) NCAR/TN-461+STR

Oleson et al. (2008) JGR, 113, doi:10.1029/2007JG000563

Stöckli et al. (2008) JGR, 113, doi:10.1029/2007JG000562

Spatial scale

1.25º longitude × 0.9375º latitude $(288 \times 192 \text{ grid})$

Temporal scale

- o 30-minute coupling with atmosphere
- o Seasonal-to-interannual (phenology)
- o Decadal-to-century climate (disturbance, land use, succession)
- o Paleoclimate (biogeography)

Land surface heterogeneity

Bonan et al. (2002) GBC, 16, doi:10.1029/2000GB001360

Global land use

Local land use is spatially heterogeneous

Patchwork of agricultural land, Colorado (NCAR)

Global land use is abstracted to the fractional area of crops and pasture

Settlement and deforestation surrounding Rio Branco, Brazil (10°S, 68°W) in the Brazilian state of Acre, near the border with Bolivia. The large image covers an area of 333 km x 333 km (NASA/GSFC/LaRC/JPL)

Flux tower measurements – temperate deciduous forest

Indiana

Morgan Monroe State Forest,

CLM3.0 – dry soil, low latent heat flux, high sensible heat flux CLM3.5 – wetter soil and higher latent heat flux

Stöckli et al. (2008) JGR, 113, doi:10.1029/2007JG000562

Annual net primary production

Ecosystem Model-Data Intercomparison (EMDI) compilation of observations •Class A (81 sites) •Class B (933 sites) NPP extracted for each model grid cell corresponding to a measurement location

Integrate ecological studies with earth system models

Eddy covariance flux tower (courtesy Dennis Baldocchi)

Test model-generated hypotheses of earth system functioning with observations

Environmental Monitoring Experimental Manipulation

Soil warming, Harvard Forest

 $CO₂$ enrichment, Duke Forest

Planetary energetics Planetary ecology Planetary metabolism

C4MIP – Climate and carbon cycle 3. Carbon cycle

Climate-carbon cycle feedback

11 carbon cycle-climate models of varying complexity

All models have a positive climate-carbon cycle feedback (20 ppm to >200 ppm)

Atmospheric carbon increases compared with no climate-carbon cycle feedback, while land carbon storage decreases Friedlingstein et al. (2006) J Climate 19:3337–3353

Prevailing model paradigm

 $CO₂$ fertilization enhances carbon uptake, diminished by decreased productivity and increased soil carbon loss with warming

But what about the nitrogen cycle and land use?

Prevailing modeling paradigm 3. Carbon cycle

CO₂ fertilization enhances carbon uptake, diminished by decreased productivity and increased soil carbon loss with warming

 $\Delta\pmb{C}_\mathsf{L}$ = β_L $\Delta\pmb{C}_{\pmb{A}}$ $\qquad \qquad \qquad \qquad \beta_\mathsf{L}$ > 0: concentration-carbon feedback (Pg \pmb{C} ppm⁻¹) $\Delta\mathcal{C}_\mathsf{L}$ = $\beta_\mathsf{L}\ \Delta\mathcal{C}_\mathsf{A}$ + $\gamma_\mathsf{L}\ \Delta\mathsf{T}$ γ_L < 0: climate-carbon feedback (Pg C K⁻¹)

Carbon-nitrogen interactions

Reduces concentration-carbon feedback (β_L) Changes sign of climate-carbon feedback (y_1)

Sokolov et al. (2008) J Climate 21:3776-3796 Thornton et al. (2009) Biogeosci 6:2099–2120

- o Nitrogen limitation reduces the $CO₂$ fertilization gain in productivity
- o Greater N mineralization with warming stimulates plant growth

Thick solid line is with preindustrial nitrogen deposition Thick dashed line is with anthropogenic nitrogen deposition Thin gray lines are C4MIP models

Thornton et al. (2009) Biogeosci 6:2099–2120

Randerson et al. (2009) GCB 15:2462-2484

- 1. Test model-generated hypotheses of earth system functioning with observations
- 2. Model experimentation to inform key research needs

Quantifying carbon–nitrogen feedbacks in CLM4

Annual Mean Forcings (Land Only) for Control and Experiment Simulations

Forcings are constant for control simulations and vary with time for experiment simulations. Shown are the 1973–1977 and 2000–2004 means and the temporal change.

Quantifying carbon–nitrogen feedbacks in CLM4

Carbon fluxes 1973 – 2004

Global Carbon Project (www.globalcarbonproject.org) Le Quéré et al. (2009) Nature Geosci 2:831–836

Quantifying carbon–nitrogen feedbacks in CLM4

β_L and γ_L Calculated for Carbon-Only and Carbon-Nitrogen Simulations

 CN_{ndep} reduces carbon loss with climate change, i.e., γ_L increases

Quantifying carbon–nitrogen feedbacks in CLM4

Carbon budget analysis (Pg C yr-1)

 $\Delta \mathcal{C}_\mathsf{L}' = \Delta \mathcal{C}_\mathsf{L}^{\mathsf{HIST}} + \Delta \Delta \mathcal{C}_\mathsf{L}^{\mathsf{CONC}} + \Delta \Delta \mathcal{C}_\mathsf{L}^{\mathsf{CLIM}} + \Delta \Delta \mathcal{C}_\mathsf{L}^{\mathsf{NDEF}} + \Delta \Delta \mathcal{C}_\mathsf{L}^{\mathsf{HLCC}}$

C: CONC feedback is four times greater than CLIM feedback

 CN_{ndep} : decrease in CONC uptake is three times greater than reduction in CLIM loss

The influence of nitrogen on the concentration–carbon feedback is of greater importance for near–term climate change simulations than its effect on the climate–carbon feedback

The land use carbon flux greatly exceeds these carbon–nitrogen biogeochemical feedbacks

Representing land use and land cover change 4. Land use

- 1. For IPCC AR5 land use and land cover change are to be described consistently with Representative Concentration Pathways (RCP) scenarios
- 2. All pathways share the same historical trajectory to 2005. After 2005 they diverge following own representative pathway.
- 3. For the historical period and for each RCP, land use that results in land cover change is described through annual changes in four basic land units:
	- Primary Vegetation (V)
	- Secondary Vegetation (S)
	- Cropping (C)
	- Pasture (P)
- 4. Harvesting of biomass is also prescribed for both primary and secondary vegetation land units
- 5. George Hurtt and colleagues at University of New Hampshire are harmonizing the historical and RCP data (luh.unh.edu)

Historical land cover change, 1850 to 2005

(datasets by Lawrence & Feddema)

Future land cover change, 2005 to 2100

IMAGE (RCP 2.6 W m-2) AIM (RCP 6.0 W m-2)

(In development)

Future land cover change, 2005 to 2100 (RCPs)

Land use – wood harvest 4. Land use

(datasets by Lawrence & Feddema)

Carbon flux to wood products

4. Land use Land use carbon flux to atmosphere

4. Land use Land use carbon flux to atmosphere

(simulations by Sam Levis)

The LUCID intercomparison study 4. Land use

Multi-model ensemble of global land use climate forcing (1992-1870)

Seven climate models of varying complexity with imposed land cover change (1992-1870)

Pitman et al. (2009) GRL, 36, L14814, doi:10.1029/2009GL039076

Models

Atmosphere - CAM3.5

Land - CLM3.5 + new datasets for present-day vegetation + grass optical properties Ocean - Prescribed SSTs and sea ice

Experiments

30-year simulations (CO_2 = 375 ppm, SSTs = 1972-2001) PD – 1992 vegetation PDv - 1870 vegetation 30-year simulations (CO_2 = 280 ppm, SSTs = 1871-1900) PI – 1870 vegetation PIv – 1992 vegetation

5-member ensembles each Total of 20 simulations and 600 model years No irrigation

The LUCID intercomparison study

Near-Surface Air Temperature Difference **IPSL-ORCHIDEE** CCSM-CLM ARPEGE-ISBA **90N 80N 80N** 80N **70N** 70_N **70N** 60N
50N
50N
40N
50N
70N
70N
70N
70S
70S
30S 60 60N 50 **50N** 40N 40M 30N 30N $20N$ **20N 10N 10N** EQ EQ $10S -$ **105** $20S 20S$ $30S -$ 30S
40S
50S $\begin{array}{r} 405 \\ 405 \\ 505 \\ 505 \\ 605 \\ 180 \end{array}$ $40S 50S 505$
 505
 180 $60S -$ 120W 60¥ 6OE 120E **120W** 60W $60E$ 120W 60W 60E 120E 120E $-0.5 - 0.2 - 0.1$ 0.1 -2 0.2 0.5 CCAM-CABLE **ECE**arth **90N** 90N 80N
70N
60N
50N **80N 70N** Change in JJA near-surface 60N **50N** 30N
40N
30N
30N
20N
10N
EQ 40N air temperature (°C) 30N **20N** resulting from land cover **10N** EQ $10S$ **105** change (PD – PDv) 205 **20S** 30S
40S
50S **30S** 40S **50S** $rac{303}{180}$ $605 +$ 120W 60W 6OE 120E 120W 60W 6OE 120E SPEEDY-LPJ ECHAM5-JSBACH 90N
80N
70N 90N **80N 70N** 60M 60N 50N
40N
30N
30N
20N
10N
EQ **50N** 40N 30N $20N$ **10N** EQ 105
205
305
405 **10S 205 30S 40S 50S** Pitman et al. (2009) GRL, 36, **50S** 605 ₁₈₀ $605 +$ L14814, doi:10.1029/2009GL039076 60W **120W** 60E 120E **120W** 60W Ω 60E 120E

The LUCID intercomparison study

Albedo forcing, 1992-1870 4. Land use

Near-surface temperature, 1992-1870

Atmospheric feedbacks 4. Land use

Land cover change offsets greenhouse gas warming

 0.5

0.75

1

 0.25

-1

 -0.75

 -0.5

 -0.25

 -0.1

 0.1

Cropland increases surface albedo

Land cover change and evapotranspiration

Prevailing model paradigm

Crops

Low latent heat flux because of:

- o Low roughness
- o Shallow roots decrease soil water availability

Trees

High latent heat flux because of:

- o High roughness
- o Deep roots allow increased soil water availability

Tropical forest – cooling from higher surface albedo of cropland and pastureland is offset by warming associated with reduced evapotranspiration

Temperate forest - higher albedo leads to cooling, but changes in evapotranspiration can either enhance or mitigate this cooling

Bonan (2008) Science 320:1444-1449

Reforestation cools climate

Annual mean temperature change

Forest Lower albedo (+)

Greater leaf area index, aerodynamic conductance, and latent heat flux (-)

Can Ameriflux provide insights?

Crops

Mead irrigated sites have highest LH LH varies with crop rotation LH varies with crop type (winter wheat)

Thomas O'Halloran Oregon State University Department of Forest Ecosystems & Society

Climate change mitigation 5. Mitigation

Ecosystems

- o Reforestation, afforestation, avoided deforestation
- o Biofuels
- o Biogeophysics and biogeochemistry (albedo, ET, carbon)

Average summer difference in the urban minus rural air temperature with roof albedos maximized

Urban planning and design

- o White roofs
- o Greenspaces

5. Mitigation

Land use choices affect 21st century climate

Future IPCC SRES land cover scenarios for NCAR LSM/PCM

d) A2 2050 land cover

A2 – Widespread agricultural expansion with most land suitable for agriculture used for farming by 2100 to support a large global population

B1 - Loss of farmland and net reforestation due to declining global population and farm abandonment in the latter part of the century

c) B1 2100 land cover

Feddema et al. (2005) Science 310:1674-1678

CO₂ concentrations

5. Mitigation

Land use choices affect 21st century climate

Conclusions

The ecology of climate models

- o Detailed representation of ecosystems
- o Allows exploration of ecological feedbacks and mitigation options

Carbon cycle

- \circ $CO₂$ fertilization enhances carbon gain, diminished by carbon loss with warming
- o N cycle reduces the concentration–carbon gain and decreases climate– carbon loss
- \circ The CO₂ fertilization effect is larger than the climate feedback effect

Land use and land cover change

Biogeochemistry

- o Wood harvest flux is important
- o Uncertainty in land use flux may be greater than the N-cycle feedback

Biogeophysics

- o Higher albedo of croplands cools climate
- o Less certainty about role of latent heat flux
- o Implementation of land cover change (spatial extent, crop parameterization) matters